FFmpeg  4.3.6
af_firequalizer.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2016 Muhammad Faiz <mfcc64@gmail.com>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/opt.h"
22 #include "libavutil/eval.h"
23 #include "libavutil/avassert.h"
24 #include "libavcodec/avfft.h"
25 #include "avfilter.h"
26 #include "internal.h"
27 #include "audio.h"
28 
29 #define RDFT_BITS_MIN 4
30 #define RDFT_BITS_MAX 16
31 
32 enum WindowFunc {
44 };
45 
46 enum Scale {
52 };
53 
54 #define NB_GAIN_ENTRY_MAX 4096
55 typedef struct GainEntry {
56  double freq;
57  double gain;
58 } GainEntry;
59 
60 typedef struct OverlapIndex {
61  int buf_idx;
63 } OverlapIndex;
64 
65 typedef struct FIREqualizerContext {
66  const AVClass *class;
67 
76  int rdft_len;
78 
79  float *analysis_buf;
80  float *dump_buf;
82  float *kernel_buf;
83  float *cepstrum_buf;
84  float *conv_buf;
86  int fir_len;
88  int64_t next_pts;
90  int remaining;
91 
92  char *gain_cmd;
94  const char *gain;
95  const char *gain_entry;
96  double delay;
97  double accuracy;
98  int wfunc;
99  int fixed;
100  int multi;
102  int scale;
103  char *dumpfile;
105  int fft2;
107 
110  GainEntry gain_entry_tbl[NB_GAIN_ENTRY_MAX];
112 
113 #define OFFSET(x) offsetof(FIREqualizerContext, x)
114 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
115 #define TFLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
116 
117 static const AVOption firequalizer_options[] = {
118  { "gain", "set gain curve", OFFSET(gain), AV_OPT_TYPE_STRING, { .str = "gain_interpolate(f)" }, 0, 0, TFLAGS },
119  { "gain_entry", "set gain entry", OFFSET(gain_entry), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, TFLAGS },
120  { "delay", "set delay", OFFSET(delay), AV_OPT_TYPE_DOUBLE, { .dbl = 0.01 }, 0.0, 1e10, FLAGS },
121  { "accuracy", "set accuracy", OFFSET(accuracy), AV_OPT_TYPE_DOUBLE, { .dbl = 5.0 }, 0.0, 1e10, FLAGS },
122  { "wfunc", "set window function", OFFSET(wfunc), AV_OPT_TYPE_INT, { .i64 = WFUNC_HANN }, 0, NB_WFUNC-1, FLAGS, "wfunc" },
123  { "rectangular", "rectangular window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_RECTANGULAR }, 0, 0, FLAGS, "wfunc" },
124  { "hann", "hann window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HANN }, 0, 0, FLAGS, "wfunc" },
125  { "hamming", "hamming window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HAMMING }, 0, 0, FLAGS, "wfunc" },
126  { "blackman", "blackman window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BLACKMAN }, 0, 0, FLAGS, "wfunc" },
127  { "nuttall3", "3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL3 }, 0, 0, FLAGS, "wfunc" },
128  { "mnuttall3", "minimum 3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_MNUTTALL3 }, 0, 0, FLAGS, "wfunc" },
129  { "nuttall", "nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL }, 0, 0, FLAGS, "wfunc" },
130  { "bnuttall", "blackman-nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BNUTTALL }, 0, 0, FLAGS, "wfunc" },
131  { "bharris", "blackman-harris window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BHARRIS }, 0, 0, FLAGS, "wfunc" },
132  { "tukey", "tukey window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_TUKEY }, 0, 0, FLAGS, "wfunc" },
133  { "fixed", "set fixed frame samples", OFFSET(fixed), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
134  { "multi", "set multi channels mode", OFFSET(multi), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
135  { "zero_phase", "set zero phase mode", OFFSET(zero_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
136  { "scale", "set gain scale", OFFSET(scale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" },
137  { "linlin", "linear-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLIN }, 0, 0, FLAGS, "scale" },
138  { "linlog", "linear-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLOG }, 0, 0, FLAGS, "scale" },
139  { "loglin", "logarithmic-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLIN }, 0, 0, FLAGS, "scale" },
140  { "loglog", "logarithmic-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLOG }, 0, 0, FLAGS, "scale" },
141  { "dumpfile", "set dump file", OFFSET(dumpfile), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
142  { "dumpscale", "set dump scale", OFFSET(dumpscale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" },
143  { "fft2", "set 2-channels fft", OFFSET(fft2), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
144  { "min_phase", "set minimum phase mode", OFFSET(min_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
145  { NULL }
146 };
147 
148 AVFILTER_DEFINE_CLASS(firequalizer);
149 
151 {
154  av_rdft_end(s->rdft);
155  av_rdft_end(s->irdft);
156  av_fft_end(s->fft_ctx);
159  s->analysis_rdft = s->analysis_irdft = s->rdft = s->irdft = NULL;
160  s->fft_ctx = NULL;
161  s->cepstrum_rdft = NULL;
162  s->cepstrum_irdft = NULL;
163 
164  av_freep(&s->analysis_buf);
165  av_freep(&s->dump_buf);
167  av_freep(&s->kernel_buf);
168  av_freep(&s->cepstrum_buf);
169  av_freep(&s->conv_buf);
170  av_freep(&s->conv_idx);
171 }
172 
174 {
175  FIREqualizerContext *s = ctx->priv;
176 
177  common_uninit(s);
178  av_freep(&s->gain_cmd);
180 }
181 
183 {
186  static const enum AVSampleFormat sample_fmts[] = {
189  };
190  int ret;
191 
192  layouts = ff_all_channel_counts();
193  if (!layouts)
194  return AVERROR(ENOMEM);
195  ret = ff_set_common_channel_layouts(ctx, layouts);
196  if (ret < 0)
197  return ret;
198 
199  formats = ff_make_format_list(sample_fmts);
200  if (!formats)
201  return AVERROR(ENOMEM);
202  ret = ff_set_common_formats(ctx, formats);
203  if (ret < 0)
204  return ret;
205 
206  formats = ff_all_samplerates();
207  if (!formats)
208  return AVERROR(ENOMEM);
209  return ff_set_common_samplerates(ctx, formats);
210 }
211 
212 static void fast_convolute(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, float *av_restrict conv_buf,
213  OverlapIndex *av_restrict idx, float *av_restrict data, int nsamples)
214 {
215  if (nsamples <= s->nsamples_max) {
216  float *buf = conv_buf + idx->buf_idx * s->rdft_len;
217  float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
218  int center = s->fir_len/2;
219  int k;
220 
221  memset(buf, 0, center * sizeof(*data));
222  memcpy(buf + center, data, nsamples * sizeof(*data));
223  memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*data));
224  av_rdft_calc(s->rdft, buf);
225 
226  buf[0] *= kernel_buf[0];
227  buf[1] *= kernel_buf[s->rdft_len/2];
228  for (k = 1; k < s->rdft_len/2; k++) {
229  buf[2*k] *= kernel_buf[k];
230  buf[2*k+1] *= kernel_buf[k];
231  }
232 
233  av_rdft_calc(s->irdft, buf);
234  for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
235  buf[k] += obuf[k];
236  memcpy(data, buf, nsamples * sizeof(*data));
237  idx->buf_idx = !idx->buf_idx;
238  idx->overlap_idx = nsamples;
239  } else {
240  while (nsamples > s->nsamples_max * 2) {
241  fast_convolute(s, kernel_buf, conv_buf, idx, data, s->nsamples_max);
242  data += s->nsamples_max;
243  nsamples -= s->nsamples_max;
244  }
245  fast_convolute(s, kernel_buf, conv_buf, idx, data, nsamples/2);
246  fast_convolute(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2);
247  }
248 }
249 
251  float *av_restrict conv_buf, OverlapIndex *av_restrict idx,
252  float *av_restrict data, int nsamples)
253 {
254  if (nsamples <= s->nsamples_max) {
255  float *buf = conv_buf + idx->buf_idx * s->rdft_len;
256  float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
257  int k;
258 
259  memcpy(buf, data, nsamples * sizeof(*data));
260  memset(buf + nsamples, 0, (s->rdft_len - nsamples) * sizeof(*data));
261  av_rdft_calc(s->rdft, buf);
262 
263  buf[0] *= kernel_buf[0];
264  buf[1] *= kernel_buf[1];
265  for (k = 2; k < s->rdft_len; k += 2) {
266  float re, im;
267  re = buf[k] * kernel_buf[k] - buf[k+1] * kernel_buf[k+1];
268  im = buf[k] * kernel_buf[k+1] + buf[k+1] * kernel_buf[k];
269  buf[k] = re;
270  buf[k+1] = im;
271  }
272 
273  av_rdft_calc(s->irdft, buf);
274  for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
275  buf[k] += obuf[k];
276  memcpy(data, buf, nsamples * sizeof(*data));
277  idx->buf_idx = !idx->buf_idx;
278  idx->overlap_idx = nsamples;
279  } else {
280  while (nsamples > s->nsamples_max * 2) {
281  fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data, s->nsamples_max);
282  data += s->nsamples_max;
283  nsamples -= s->nsamples_max;
284  }
285  fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data, nsamples/2);
286  fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2);
287  }
288 }
289 
290 static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, FFTComplex *av_restrict conv_buf,
291  OverlapIndex *av_restrict idx, float *av_restrict data0, float *av_restrict data1, int nsamples)
292 {
293  if (nsamples <= s->nsamples_max) {
294  FFTComplex *buf = conv_buf + idx->buf_idx * s->rdft_len;
295  FFTComplex *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
296  int center = s->fir_len/2;
297  int k;
298  float tmp;
299 
300  memset(buf, 0, center * sizeof(*buf));
301  for (k = 0; k < nsamples; k++) {
302  buf[center+k].re = data0[k];
303  buf[center+k].im = data1[k];
304  }
305  memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*buf));
306  av_fft_permute(s->fft_ctx, buf);
307  av_fft_calc(s->fft_ctx, buf);
308 
309  /* swap re <-> im, do backward fft using forward fft_ctx */
310  /* normalize with 0.5f */
311  tmp = buf[0].re;
312  buf[0].re = 0.5f * kernel_buf[0] * buf[0].im;
313  buf[0].im = 0.5f * kernel_buf[0] * tmp;
314  for (k = 1; k < s->rdft_len/2; k++) {
315  int m = s->rdft_len - k;
316  tmp = buf[k].re;
317  buf[k].re = 0.5f * kernel_buf[k] * buf[k].im;
318  buf[k].im = 0.5f * kernel_buf[k] * tmp;
319  tmp = buf[m].re;
320  buf[m].re = 0.5f * kernel_buf[k] * buf[m].im;
321  buf[m].im = 0.5f * kernel_buf[k] * tmp;
322  }
323  tmp = buf[k].re;
324  buf[k].re = 0.5f * kernel_buf[k] * buf[k].im;
325  buf[k].im = 0.5f * kernel_buf[k] * tmp;
326 
327  av_fft_permute(s->fft_ctx, buf);
328  av_fft_calc(s->fft_ctx, buf);
329 
330  for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) {
331  buf[k].re += obuf[k].re;
332  buf[k].im += obuf[k].im;
333  }
334 
335  /* swapped re <-> im */
336  for (k = 0; k < nsamples; k++) {
337  data0[k] = buf[k].im;
338  data1[k] = buf[k].re;
339  }
340  idx->buf_idx = !idx->buf_idx;
341  idx->overlap_idx = nsamples;
342  } else {
343  while (nsamples > s->nsamples_max * 2) {
344  fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, s->nsamples_max);
345  data0 += s->nsamples_max;
346  data1 += s->nsamples_max;
347  nsamples -= s->nsamples_max;
348  }
349  fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, nsamples/2);
350  fast_convolute2(s, kernel_buf, conv_buf, idx, data0 + nsamples/2, data1 + nsamples/2, nsamples - nsamples/2);
351  }
352 }
353 
354 static void dump_fir(AVFilterContext *ctx, FILE *fp, int ch)
355 {
356  FIREqualizerContext *s = ctx->priv;
357  int rate = ctx->inputs[0]->sample_rate;
358  int xlog = s->dumpscale == SCALE_LOGLIN || s->dumpscale == SCALE_LOGLOG;
359  int ylog = s->dumpscale == SCALE_LINLOG || s->dumpscale == SCALE_LOGLOG;
360  int x;
361  int center = s->fir_len / 2;
362  double delay = s->zero_phase ? 0.0 : (double) center / rate;
363  double vx, ya, yb;
364 
365  if (!s->min_phase) {
366  s->analysis_buf[0] *= s->rdft_len/2;
367  for (x = 1; x <= center; x++) {
368  s->analysis_buf[x] *= s->rdft_len/2;
369  s->analysis_buf[s->analysis_rdft_len - x] *= s->rdft_len/2;
370  }
371  } else {
372  for (x = 0; x < s->fir_len; x++)
373  s->analysis_buf[x] *= s->rdft_len/2;
374  }
375 
376  if (ch)
377  fprintf(fp, "\n\n");
378 
379  fprintf(fp, "# time[%d] (time amplitude)\n", ch);
380 
381  if (!s->min_phase) {
382  for (x = center; x > 0; x--)
383  fprintf(fp, "%15.10f %15.10f\n", delay - (double) x / rate, (double) s->analysis_buf[s->analysis_rdft_len - x]);
384 
385  for (x = 0; x <= center; x++)
386  fprintf(fp, "%15.10f %15.10f\n", delay + (double)x / rate , (double) s->analysis_buf[x]);
387  } else {
388  for (x = 0; x < s->fir_len; x++)
389  fprintf(fp, "%15.10f %15.10f\n", (double)x / rate, (double) s->analysis_buf[x]);
390  }
391 
393 
394  fprintf(fp, "\n\n# freq[%d] (frequency desired_gain actual_gain)\n", ch);
395 
396  for (x = 0; x <= s->analysis_rdft_len/2; x++) {
397  int i = (x == s->analysis_rdft_len/2) ? 1 : 2 * x;
398  vx = (double)x * rate / s->analysis_rdft_len;
399  if (xlog)
400  vx = log2(0.05*vx);
401  ya = s->dump_buf[i];
402  yb = s->min_phase && (i > 1) ? hypotf(s->analysis_buf[i], s->analysis_buf[i+1]) : s->analysis_buf[i];
403  if (s->min_phase)
404  yb = fabs(yb);
405  if (ylog) {
406  ya = 20.0 * log10(fabs(ya));
407  yb = 20.0 * log10(fabs(yb));
408  }
409  fprintf(fp, "%17.10f %17.10f %17.10f\n", vx, ya, yb);
410  }
411 }
412 
413 static double entry_func(void *p, double freq, double gain)
414 {
415  AVFilterContext *ctx = p;
416  FIREqualizerContext *s = ctx->priv;
417 
418  if (s->nb_gain_entry >= NB_GAIN_ENTRY_MAX) {
419  av_log(ctx, AV_LOG_ERROR, "entry table overflow.\n");
420  s->gain_entry_err = AVERROR(EINVAL);
421  return 0;
422  }
423 
424  if (isnan(freq)) {
425  av_log(ctx, AV_LOG_ERROR, "nan frequency (%g, %g).\n", freq, gain);
426  s->gain_entry_err = AVERROR(EINVAL);
427  return 0;
428  }
429 
430  if (s->nb_gain_entry > 0 && freq <= s->gain_entry_tbl[s->nb_gain_entry - 1].freq) {
431  av_log(ctx, AV_LOG_ERROR, "unsorted frequency (%g, %g).\n", freq, gain);
432  s->gain_entry_err = AVERROR(EINVAL);
433  return 0;
434  }
435 
438  s->nb_gain_entry++;
439  return 0;
440 }
441 
442 static int gain_entry_compare(const void *key, const void *memb)
443 {
444  const double *freq = key;
445  const GainEntry *entry = memb;
446 
447  if (*freq < entry[0].freq)
448  return -1;
449  if (*freq > entry[1].freq)
450  return 1;
451  return 0;
452 }
453 
454 static double gain_interpolate_func(void *p, double freq)
455 {
456  AVFilterContext *ctx = p;
457  FIREqualizerContext *s = ctx->priv;
458  GainEntry *res;
459  double d0, d1, d;
460 
461  if (isnan(freq))
462  return freq;
463 
464  if (!s->nb_gain_entry)
465  return 0;
466 
467  if (freq <= s->gain_entry_tbl[0].freq)
468  return s->gain_entry_tbl[0].gain;
469 
470  if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq)
471  return s->gain_entry_tbl[s->nb_gain_entry-1].gain;
472 
473  res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare);
474  av_assert0(res);
475 
476  d = res[1].freq - res[0].freq;
477  d0 = freq - res[0].freq;
478  d1 = res[1].freq - freq;
479 
480  if (d0 && d1)
481  return (d0 * res[1].gain + d1 * res[0].gain) / d;
482 
483  if (d0)
484  return res[1].gain;
485 
486  return res[0].gain;
487 }
488 
489 static double cubic_interpolate_func(void *p, double freq)
490 {
491  AVFilterContext *ctx = p;
492  FIREqualizerContext *s = ctx->priv;
493  GainEntry *res;
494  double x, x2, x3;
495  double a, b, c, d;
496  double m0, m1, m2, msum, unit;
497 
498  if (!s->nb_gain_entry)
499  return 0;
500 
501  if (freq <= s->gain_entry_tbl[0].freq)
502  return s->gain_entry_tbl[0].gain;
503 
504  if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq)
505  return s->gain_entry_tbl[s->nb_gain_entry-1].gain;
506 
507  res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare);
508  av_assert0(res);
509 
510  unit = res[1].freq - res[0].freq;
511  m0 = res != s->gain_entry_tbl ?
512  unit * (res[0].gain - res[-1].gain) / (res[0].freq - res[-1].freq) : 0;
513  m1 = res[1].gain - res[0].gain;
514  m2 = res != s->gain_entry_tbl + s->nb_gain_entry - 2 ?
515  unit * (res[2].gain - res[1].gain) / (res[2].freq - res[1].freq) : 0;
516 
517  msum = fabs(m0) + fabs(m1);
518  m0 = msum > 0 ? (fabs(m0) * m1 + fabs(m1) * m0) / msum : 0;
519  msum = fabs(m1) + fabs(m2);
520  m1 = msum > 0 ? (fabs(m1) * m2 + fabs(m2) * m1) / msum : 0;
521 
522  d = res[0].gain;
523  c = m0;
524  b = 3 * res[1].gain - m1 - 2 * c - 3 * d;
525  a = res[1].gain - b - c - d;
526 
527  x = (freq - res[0].freq) / unit;
528  x2 = x * x;
529  x3 = x2 * x;
530 
531  return a * x3 + b * x2 + c * x + d;
532 }
533 
534 static const char *const var_names[] = {
535  "f",
536  "sr",
537  "ch",
538  "chid",
539  "chs",
540  "chlayout",
541  NULL
542 };
543 
544 enum VarOffset {
552 };
553 
554 static void generate_min_phase_kernel(FIREqualizerContext *s, float *rdft_buf)
555 {
556  int k, cepstrum_len = s->cepstrum_len, rdft_len = s->rdft_len;
557  double norm = 2.0 / cepstrum_len;
558  double minval = 1e-7 / rdft_len;
559 
560  memset(s->cepstrum_buf, 0, cepstrum_len * sizeof(*s->cepstrum_buf));
561  memcpy(s->cepstrum_buf, rdft_buf, rdft_len/2 * sizeof(*rdft_buf));
562  memcpy(s->cepstrum_buf + cepstrum_len - rdft_len/2, rdft_buf + rdft_len/2, rdft_len/2 * sizeof(*rdft_buf));
563 
565 
566  s->cepstrum_buf[0] = log(FFMAX(s->cepstrum_buf[0], minval));
567  s->cepstrum_buf[1] = log(FFMAX(s->cepstrum_buf[1], minval));
568 
569  for (k = 2; k < cepstrum_len; k += 2) {
570  s->cepstrum_buf[k] = log(FFMAX(s->cepstrum_buf[k], minval));
571  s->cepstrum_buf[k+1] = 0;
572  }
573 
575 
576  memset(s->cepstrum_buf + cepstrum_len/2 + 1, 0, (cepstrum_len/2 - 1) * sizeof(*s->cepstrum_buf));
577  for (k = 1; k < cepstrum_len/2; k++)
578  s->cepstrum_buf[k] *= 2;
579 
581 
582  s->cepstrum_buf[0] = exp(s->cepstrum_buf[0] * norm) * norm;
583  s->cepstrum_buf[1] = exp(s->cepstrum_buf[1] * norm) * norm;
584  for (k = 2; k < cepstrum_len; k += 2) {
585  double mag = exp(s->cepstrum_buf[k] * norm) * norm;
586  double ph = s->cepstrum_buf[k+1] * norm;
587  s->cepstrum_buf[k] = mag * cos(ph);
588  s->cepstrum_buf[k+1] = mag * sin(ph);
589  }
590 
592  memset(rdft_buf, 0, s->rdft_len * sizeof(*rdft_buf));
593  memcpy(rdft_buf, s->cepstrum_buf, s->fir_len * sizeof(*rdft_buf));
594 
595  if (s->dumpfile) {
596  memset(s->analysis_buf, 0, s->analysis_rdft_len * sizeof(*s->analysis_buf));
597  memcpy(s->analysis_buf, s->cepstrum_buf, s->fir_len * sizeof(*s->analysis_buf));
598  }
599 
600 }
601 
602 static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *gain_entry)
603 {
604  FIREqualizerContext *s = ctx->priv;
605  AVFilterLink *inlink = ctx->inputs[0];
606  const char *gain_entry_func_names[] = { "entry", NULL };
607  const char *gain_func_names[] = { "gain_interpolate", "cubic_interpolate", NULL };
608  double (*gain_entry_funcs[])(void *, double, double) = { entry_func, NULL };
609  double (*gain_funcs[])(void *, double) = { gain_interpolate_func, cubic_interpolate_func, NULL };
610  double vars[VAR_NB];
611  AVExpr *gain_expr;
612  int ret, k, center, ch;
613  int xlog = s->scale == SCALE_LOGLIN || s->scale == SCALE_LOGLOG;
614  int ylog = s->scale == SCALE_LINLOG || s->scale == SCALE_LOGLOG;
615  FILE *dump_fp = NULL;
616 
617  s->nb_gain_entry = 0;
618  s->gain_entry_err = 0;
619  if (gain_entry) {
620  double result = 0.0;
621  ret = av_expr_parse_and_eval(&result, gain_entry, NULL, NULL, NULL, NULL,
622  gain_entry_func_names, gain_entry_funcs, ctx, 0, ctx);
623  if (ret < 0)
624  return ret;
625  if (s->gain_entry_err < 0)
626  return s->gain_entry_err;
627  }
628 
629  av_log(ctx, AV_LOG_DEBUG, "nb_gain_entry = %d.\n", s->nb_gain_entry);
630 
631  ret = av_expr_parse(&gain_expr, gain, var_names,
632  gain_func_names, gain_funcs, NULL, NULL, 0, ctx);
633  if (ret < 0)
634  return ret;
635 
636  if (s->dumpfile && (!s->dump_buf || !s->analysis_rdft || !(dump_fp = fopen(s->dumpfile, "w"))))
637  av_log(ctx, AV_LOG_WARNING, "dumping failed.\n");
638 
639  vars[VAR_CHS] = inlink->channels;
640  vars[VAR_CHLAYOUT] = inlink->channel_layout;
641  vars[VAR_SR] = inlink->sample_rate;
642  for (ch = 0; ch < inlink->channels; ch++) {
643  float *rdft_buf = s->kernel_tmp_buf + ch * s->rdft_len;
644  double result;
645  vars[VAR_CH] = ch;
647  vars[VAR_F] = 0.0;
648  if (xlog)
649  vars[VAR_F] = log2(0.05 * vars[VAR_F]);
650  result = av_expr_eval(gain_expr, vars, ctx);
651  s->analysis_buf[0] = ylog ? pow(10.0, 0.05 * result) : result;
652 
653  vars[VAR_F] = 0.5 * inlink->sample_rate;
654  if (xlog)
655  vars[VAR_F] = log2(0.05 * vars[VAR_F]);
656  result = av_expr_eval(gain_expr, vars, ctx);
657  s->analysis_buf[1] = ylog ? pow(10.0, 0.05 * result) : result;
658 
659  for (k = 1; k < s->analysis_rdft_len/2; k++) {
660  vars[VAR_F] = k * ((double)inlink->sample_rate /(double)s->analysis_rdft_len);
661  if (xlog)
662  vars[VAR_F] = log2(0.05 * vars[VAR_F]);
663  result = av_expr_eval(gain_expr, vars, ctx);
664  s->analysis_buf[2*k] = ylog ? pow(10.0, 0.05 * result) : s->min_phase ? fabs(result) : result;
665  s->analysis_buf[2*k+1] = 0.0;
666  }
667 
668  if (s->dump_buf)
669  memcpy(s->dump_buf, s->analysis_buf, s->analysis_rdft_len * sizeof(*s->analysis_buf));
670 
672  center = s->fir_len / 2;
673 
674  for (k = 0; k <= center; k++) {
675  double u = k * (M_PI/center);
676  double win;
677  switch (s->wfunc) {
678  case WFUNC_RECTANGULAR:
679  win = 1.0;
680  break;
681  case WFUNC_HANN:
682  win = 0.5 + 0.5 * cos(u);
683  break;
684  case WFUNC_HAMMING:
685  win = 0.53836 + 0.46164 * cos(u);
686  break;
687  case WFUNC_BLACKMAN:
688  win = 0.42 + 0.5 * cos(u) + 0.08 * cos(2*u);
689  break;
690  case WFUNC_NUTTALL3:
691  win = 0.40897 + 0.5 * cos(u) + 0.09103 * cos(2*u);
692  break;
693  case WFUNC_MNUTTALL3:
694  win = 0.4243801 + 0.4973406 * cos(u) + 0.0782793 * cos(2*u);
695  break;
696  case WFUNC_NUTTALL:
697  win = 0.355768 + 0.487396 * cos(u) + 0.144232 * cos(2*u) + 0.012604 * cos(3*u);
698  break;
699  case WFUNC_BNUTTALL:
700  win = 0.3635819 + 0.4891775 * cos(u) + 0.1365995 * cos(2*u) + 0.0106411 * cos(3*u);
701  break;
702  case WFUNC_BHARRIS:
703  win = 0.35875 + 0.48829 * cos(u) + 0.14128 * cos(2*u) + 0.01168 * cos(3*u);
704  break;
705  case WFUNC_TUKEY:
706  win = (u <= 0.5 * M_PI) ? 1.0 : (0.5 + 0.5 * cos(2*u - M_PI));
707  break;
708  default:
709  av_assert0(0);
710  }
711  s->analysis_buf[k] *= (2.0/s->analysis_rdft_len) * (2.0/s->rdft_len) * win;
712  if (k)
713  s->analysis_buf[s->analysis_rdft_len - k] = s->analysis_buf[k];
714  }
715 
716  memset(s->analysis_buf + center + 1, 0, (s->analysis_rdft_len - s->fir_len) * sizeof(*s->analysis_buf));
717  memcpy(rdft_buf, s->analysis_buf, s->rdft_len/2 * sizeof(*s->analysis_buf));
718  memcpy(rdft_buf + s->rdft_len/2, s->analysis_buf + s->analysis_rdft_len - s->rdft_len/2, s->rdft_len/2 * sizeof(*s->analysis_buf));
719  if (s->min_phase)
720  generate_min_phase_kernel(s, rdft_buf);
721  av_rdft_calc(s->rdft, rdft_buf);
722 
723  for (k = 0; k < s->rdft_len; k++) {
724  if (isnan(rdft_buf[k]) || isinf(rdft_buf[k])) {
725  av_log(ctx, AV_LOG_ERROR, "filter kernel contains nan or infinity.\n");
726  av_expr_free(gain_expr);
727  if (dump_fp)
728  fclose(dump_fp);
729  return AVERROR(EINVAL);
730  }
731  }
732 
733  if (!s->min_phase) {
734  rdft_buf[s->rdft_len-1] = rdft_buf[1];
735  for (k = 0; k < s->rdft_len/2; k++)
736  rdft_buf[k] = rdft_buf[2*k];
737  rdft_buf[s->rdft_len/2] = rdft_buf[s->rdft_len-1];
738  }
739 
740  if (dump_fp)
741  dump_fir(ctx, dump_fp, ch);
742 
743  if (!s->multi)
744  break;
745  }
746 
747  memcpy(s->kernel_buf, s->kernel_tmp_buf, (s->multi ? inlink->channels : 1) * s->rdft_len * sizeof(*s->kernel_buf));
748  av_expr_free(gain_expr);
749  if (dump_fp)
750  fclose(dump_fp);
751  return 0;
752 }
753 
754 #define SELECT_GAIN(s) (s->gain_cmd ? s->gain_cmd : s->gain)
755 #define SELECT_GAIN_ENTRY(s) (s->gain_entry_cmd ? s->gain_entry_cmd : s->gain_entry)
756 
757 static int config_input(AVFilterLink *inlink)
758 {
759  AVFilterContext *ctx = inlink->dst;
760  FIREqualizerContext *s = ctx->priv;
761  int rdft_bits;
762 
763  common_uninit(s);
764 
765  s->next_pts = 0;
766  s->frame_nsamples_max = 0;
767 
768  s->fir_len = FFMAX(2 * (int)(inlink->sample_rate * s->delay) + 1, 3);
769  s->remaining = s->fir_len - 1;
770 
771  for (rdft_bits = RDFT_BITS_MIN; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) {
772  s->rdft_len = 1 << rdft_bits;
773  s->nsamples_max = s->rdft_len - s->fir_len + 1;
774  if (s->nsamples_max * 2 >= s->fir_len)
775  break;
776  }
777 
778  if (rdft_bits > RDFT_BITS_MAX) {
779  av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n");
780  return AVERROR(EINVAL);
781  }
782 
783  if (!(s->rdft = av_rdft_init(rdft_bits, DFT_R2C)) || !(s->irdft = av_rdft_init(rdft_bits, IDFT_C2R)))
784  return AVERROR(ENOMEM);
785 
786  if (s->fft2 && !s->multi && inlink->channels > 1 && !(s->fft_ctx = av_fft_init(rdft_bits, 0)))
787  return AVERROR(ENOMEM);
788 
789  if (s->min_phase) {
790  int cepstrum_bits = rdft_bits + 2;
791  if (cepstrum_bits > RDFT_BITS_MAX) {
792  av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n");
793  return AVERROR(EINVAL);
794  }
795 
796  cepstrum_bits = FFMIN(RDFT_BITS_MAX, cepstrum_bits + 1);
797  s->cepstrum_rdft = av_rdft_init(cepstrum_bits, DFT_R2C);
798  s->cepstrum_irdft = av_rdft_init(cepstrum_bits, IDFT_C2R);
799  if (!s->cepstrum_rdft || !s->cepstrum_irdft)
800  return AVERROR(ENOMEM);
801 
802  s->cepstrum_len = 1 << cepstrum_bits;
804  if (!s->cepstrum_buf)
805  return AVERROR(ENOMEM);
806  }
807 
808  for ( ; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) {
809  s->analysis_rdft_len = 1 << rdft_bits;
810  if (inlink->sample_rate <= s->accuracy * s->analysis_rdft_len)
811  break;
812  }
813 
814  if (rdft_bits > RDFT_BITS_MAX) {
815  av_log(ctx, AV_LOG_ERROR, "too small accuracy, please increase it.\n");
816  return AVERROR(EINVAL);
817  }
818 
819  if (!(s->analysis_irdft = av_rdft_init(rdft_bits, IDFT_C2R)))
820  return AVERROR(ENOMEM);
821 
822  if (s->dumpfile) {
823  s->analysis_rdft = av_rdft_init(rdft_bits, DFT_R2C);
824  s->dump_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->dump_buf));
825  }
826 
828  s->kernel_tmp_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_tmp_buf));
829  s->kernel_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_buf));
830  s->conv_buf = av_calloc(2 * s->rdft_len * inlink->channels, sizeof(*s->conv_buf));
831  s->conv_idx = av_calloc(inlink->channels, sizeof(*s->conv_idx));
832  if (!s->analysis_buf || !s->kernel_tmp_buf || !s->kernel_buf || !s->conv_buf || !s->conv_idx)
833  return AVERROR(ENOMEM);
834 
835  av_log(ctx, AV_LOG_DEBUG, "sample_rate = %d, channels = %d, analysis_rdft_len = %d, rdft_len = %d, fir_len = %d, nsamples_max = %d.\n",
836  inlink->sample_rate, inlink->channels, s->analysis_rdft_len, s->rdft_len, s->fir_len, s->nsamples_max);
837 
838  if (s->fixed)
839  inlink->min_samples = inlink->max_samples = inlink->partial_buf_size = s->nsamples_max;
840 
841  return generate_kernel(ctx, SELECT_GAIN(s), SELECT_GAIN_ENTRY(s));
842 }
843 
844 static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
845 {
846  AVFilterContext *ctx = inlink->dst;
847  FIREqualizerContext *s = ctx->priv;
848  int ch;
849 
850  if (!s->min_phase) {
851  for (ch = 0; ch + 1 < inlink->channels && s->fft_ctx; ch += 2) {
852  fast_convolute2(s, s->kernel_buf, (FFTComplex *)(s->conv_buf + 2 * ch * s->rdft_len),
853  s->conv_idx + ch, (float *) frame->extended_data[ch],
854  (float *) frame->extended_data[ch+1], frame->nb_samples);
855  }
856 
857  for ( ; ch < inlink->channels; ch++) {
858  fast_convolute(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0),
859  s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
860  (float *) frame->extended_data[ch], frame->nb_samples);
861  }
862  } else {
863  for (ch = 0; ch < inlink->channels; ch++) {
864  fast_convolute_nonlinear(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0),
865  s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
866  (float *) frame->extended_data[ch], frame->nb_samples);
867  }
868  }
869 
871  if (frame->pts != AV_NOPTS_VALUE) {
872  s->next_pts = frame->pts + av_rescale_q(frame->nb_samples, av_make_q(1, inlink->sample_rate), inlink->time_base);
873  if (s->zero_phase && !s->min_phase)
874  frame->pts -= av_rescale_q(s->fir_len/2, av_make_q(1, inlink->sample_rate), inlink->time_base);
875  }
877  return ff_filter_frame(ctx->outputs[0], frame);
878 }
879 
880 static int request_frame(AVFilterLink *outlink)
881 {
882  AVFilterContext *ctx = outlink->src;
883  FIREqualizerContext *s= ctx->priv;
884  int ret;
885 
886  ret = ff_request_frame(ctx->inputs[0]);
887  if (ret == AVERROR_EOF && s->remaining > 0 && s->frame_nsamples_max > 0) {
889 
890  if (!frame)
891  return AVERROR(ENOMEM);
892 
893  av_samples_set_silence(frame->extended_data, 0, frame->nb_samples, outlink->channels, frame->format);
894  frame->pts = s->next_pts;
895  s->remaining -= frame->nb_samples;
896  ret = filter_frame(ctx->inputs[0], frame);
897  }
898 
899  return ret;
900 }
901 
902 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
903  char *res, int res_len, int flags)
904 {
905  FIREqualizerContext *s = ctx->priv;
906  int ret = AVERROR(ENOSYS);
907 
908  if (!strcmp(cmd, "gain")) {
909  char *gain_cmd;
910 
911  if (SELECT_GAIN(s) && !strcmp(SELECT_GAIN(s), args)) {
912  av_log(ctx, AV_LOG_DEBUG, "equal gain, do not rebuild.\n");
913  return 0;
914  }
915 
916  gain_cmd = av_strdup(args);
917  if (!gain_cmd)
918  return AVERROR(ENOMEM);
919 
920  ret = generate_kernel(ctx, gain_cmd, SELECT_GAIN_ENTRY(s));
921  if (ret >= 0) {
922  av_freep(&s->gain_cmd);
923  s->gain_cmd = gain_cmd;
924  } else {
925  av_freep(&gain_cmd);
926  }
927  } else if (!strcmp(cmd, "gain_entry")) {
928  char *gain_entry_cmd;
929 
930  if (SELECT_GAIN_ENTRY(s) && !strcmp(SELECT_GAIN_ENTRY(s), args)) {
931  av_log(ctx, AV_LOG_DEBUG, "equal gain_entry, do not rebuild.\n");
932  return 0;
933  }
934 
935  gain_entry_cmd = av_strdup(args);
936  if (!gain_entry_cmd)
937  return AVERROR(ENOMEM);
938 
939  ret = generate_kernel(ctx, SELECT_GAIN(s), gain_entry_cmd);
940  if (ret >= 0) {
942  s->gain_entry_cmd = gain_entry_cmd;
943  } else {
944  av_freep(&gain_entry_cmd);
945  }
946  }
947 
948  return ret;
949 }
950 
952  {
953  .name = "default",
954  .config_props = config_input,
955  .filter_frame = filter_frame,
956  .type = AVMEDIA_TYPE_AUDIO,
957  .needs_writable = 1,
958  },
959  { NULL }
960 };
961 
963  {
964  .name = "default",
965  .request_frame = request_frame,
966  .type = AVMEDIA_TYPE_AUDIO,
967  },
968  { NULL }
969 };
970 
972  .name = "firequalizer",
973  .description = NULL_IF_CONFIG_SMALL("Finite Impulse Response Equalizer."),
974  .uninit = uninit,
975  .query_formats = query_formats,
976  .process_command = process_command,
977  .priv_size = sizeof(FIREqualizerContext),
978  .inputs = firequalizer_inputs,
979  .outputs = firequalizer_outputs,
980  .priv_class = &firequalizer_class,
981 };
float, planar
Definition: samplefmt.h:69
#define NULL
Definition: coverity.c:32
int ff_set_common_channel_layouts(AVFilterContext *ctx, AVFilterChannelLayouts *layouts)
A helper for query_formats() which sets all links to the same list of channel layouts/sample rates...
Definition: formats.c:586
#define isinf(x)
Definition: libm.h:317
This structure describes decoded (raw) audio or video data.
Definition: frame.h:300
AVOption.
Definition: opt.h:246
av_cold void av_fft_end(FFTContext *s)
Definition: avfft.c:48
float re
Definition: fft.c:82
#define fixed(width, name, value)
Definition: cbs_av1.c:570
RDFTContext * rdft
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static void common_uninit(FIREqualizerContext *s)
Main libavfilter public API header.
static float win(SuperEqualizerContext *s, float n, int N)
static void generate_min_phase_kernel(FIREqualizerContext *s, float *rdft_buf)
static double gain_interpolate_func(void *p, double freq)
const char * b
Definition: vf_curves.c:116
FFTSample re
Definition: avfft.h:38
static int request_frame(AVFilterLink *outlink)
#define SELECT_GAIN(s)
void av_fft_permute(FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling ff_fft_calc().
Definition: avfft.c:38
static int config_input(AVFilterLink *inlink)
const char * key
int av_expr_parse(AVExpr **expr, const char *s, const char *const *const_names, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), int log_offset, void *log_ctx)
Parse an expression.
Definition: eval.c:685
#define SELECT_GAIN_ENTRY(s)
#define log2(x)
Definition: libm.h:404
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
Definition: mem.c:245
#define NB_GAIN_ENTRY_MAX
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:300
#define RDFT_BITS_MIN
static const AVFilterPad firequalizer_outputs[]
const char * name
Pad name.
Definition: internal.h:60
AVFilterLink ** inputs
array of pointers to input links
Definition: avfilter.h:346
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
VarOffset
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1075
RDFTContext * irdft
#define av_cold
Definition: attributes.h:88
AVOptions.
static double cubic_interpolate_func(void *p, double freq)
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:393
#define RDFT_BITS_MAX
Definition: eval.c:157
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:262
static AVFrame * frame
const char data[16]
Definition: mxf.c:91
static const char *const var_names[]
#define AVERROR_EOF
End of file.
Definition: error.h:55
#define av_restrict
Definition: config.h:10
#define av_log(a,...)
A filter pad used for either input or output.
Definition: internal.h:54
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
Definition: mathematics.c:142
int av_expr_parse_and_eval(double *d, const char *s, const char *const *const_names, const double *const_values, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), void *opaque, int log_offset, void *log_ctx)
Parse and evaluate an expression.
Definition: eval.c:776
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ff_set_common_formats(AVFilterContext *ctx, AVFilterFormats *formats)
A helper for query_formats() which sets all links to the same list of formats.
Definition: formats.c:605
int av_samples_set_silence(uint8_t **audio_data, int offset, int nb_samples, int nb_channels, enum AVSampleFormat sample_fmt)
Fill an audio buffer with silence.
Definition: samplefmt.c:237
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
Definition: audio.c:86
#define AVERROR(e)
Definition: error.h:43
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:188
AVFILTER_DEFINE_CLASS(firequalizer)
RDFTContext * cepstrum_rdft
void * priv
private data for use by the filter
Definition: avfilter.h:353
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
simple assert() macros that are a bit more flexible than ISO C assert().
Definition: avfft.h:73
FFTContext * av_fft_init(int nbits, int inverse)
Set up a complex FFT.
Definition: avfft.c:28
RDFTContext * cepstrum_irdft
#define FFMAX(a, b)
Definition: common.h:94
RDFTContext * analysis_irdft
int8_t exp
Definition: eval.c:72
static av_cold void uninit(AVFilterContext *ctx)
static const AVOption firequalizer_options[]
void av_rdft_calc(RDFTContext *s, FFTSample *data)
Definition: fft.h:88
static const AVFilterPad firequalizer_inputs[]
WindowFunc
static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, FFTComplex *av_restrict conv_buf, OverlapIndex *av_restrict idx, float *av_restrict data0, float *av_restrict data1, int nsamples)
#define FFMIN(a, b)
Definition: common.h:96
static void fast_convolute_nonlinear(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, float *av_restrict conv_buf, OverlapIndex *av_restrict idx, float *av_restrict data, int nsamples)
AVFormatContext * ctx
Definition: movenc.c:48
#define FLAGS
const char * gain_entry
#define s(width, name)
Definition: cbs_vp9.c:257
Definition: avfft.h:72
void av_rdft_end(RDFTContext *s)
RDFTContext * av_rdft_init(int nbits, enum RDFTransformType trans)
Set up a real FFT.
static const AVFilterPad inputs[]
Definition: af_acontrast.c:193
OverlapIndex * conv_idx
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
A list of supported channel layouts.
Definition: formats.h:85
static double entry_func(void *p, double freq, double gain)
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
Definition: frame.h:373
static const uint8_t vars[2][12]
Definition: camellia.c:179
#define OFFSET(x)
char * av_strdup(const char *s)
Duplicate a string.
Definition: mem.c:253
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
void av_expr_free(AVExpr *e)
Free a parsed expression previously created with av_expr_parse().
Definition: eval.c:336
AVFilter ff_af_firequalizer
static AVRational av_make_q(int num, int den)
Create an AVRational.
Definition: rational.h:71
FFT functions.
Scale
#define fp
Definition: regdef.h:44
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
static void fast_convolute(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, float *av_restrict conv_buf, OverlapIndex *av_restrict idx, float *av_restrict data, int nsamples)
Describe the class of an AVClass context structure.
Definition: log.h:67
Filter definition.
Definition: avfilter.h:144
#define isnan(x)
Definition: libm.h:340
float im
Definition: fft.c:82
GainEntry gain_entry_tbl[NB_GAIN_ENTRY_MAX]
const char * name
Filter name.
Definition: avfilter.h:148
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:350
enum MovChannelLayoutTag * layouts
Definition: mov_chan.c:434
AVFilterFormats * ff_all_samplerates(void)
Definition: formats.c:439
static void dump_fir(AVFilterContext *ctx, FILE *fp, int ch)
#define flags(name, subs,...)
Definition: cbs_av1.c:565
#define TFLAGS
FFTSample im
Definition: avfft.h:38
if(ret< 0)
Definition: vf_mcdeint.c:279
RDFTContext * analysis_rdft
uint64_t av_channel_layout_extract_channel(uint64_t channel_layout, int index)
Get the channel with the given index in channel_layout.
static double c[64]
static void fft2(FFTComplex *z)
Definition: tx_template.c:289
static int query_formats(AVFilterContext *ctx)
static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *gain_entry)
double av_expr_eval(AVExpr *e, const double *const_values, void *opaque)
Evaluate a previously parsed expression.
Definition: eval.c:766
A list of supported formats for one end of a filter link.
Definition: formats.h:64
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
An instance of a filter.
Definition: avfilter.h:338
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:731
FFTContext * fft_ctx
#define av_freep(p)
#define M_PI
Definition: mathematics.h:52
#define av_malloc_array(a, b)
static int gain_entry_compare(const void *key, const void *memb)
int ff_request_frame(AVFilterLink *link)
Request an input frame from the filter at the other end of the link.
Definition: avfilter.c:407
formats
Definition: signature.h:48
internal API functions
AVFilterChannelLayouts * ff_all_channel_counts(void)
Construct an AVFilterChannelLayouts coding for any channel layout, with known or unknown disposition...
Definition: formats.c:454
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:347
void av_fft_calc(FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in av_fft_init().
Definition: avfft.c:43
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:366
int ff_set_common_samplerates(AVFilterContext *ctx, AVFilterFormats *samplerates)
Definition: formats.c:593
#define AV_NOPTS_VALUE
Undefined timestamp value.
Definition: avutil.h:248
simple arithmetic expression evaluator
static uint8_t tmp[11]
Definition: aes_ctr.c:26