FFmpeg  4.3.6
vf_lut3d.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2013 Clément Bœsch
3  * Copyright (c) 2018 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * 3D Lookup table filter
25  */
26 
27 #include "float.h"
28 
29 #include "libavutil/opt.h"
30 #include "libavutil/file.h"
31 #include "libavutil/intreadwrite.h"
32 #include "libavutil/intfloat.h"
33 #include "libavutil/avassert.h"
34 #include "libavutil/pixdesc.h"
35 #include "libavutil/avstring.h"
36 #include "avfilter.h"
37 #include "drawutils.h"
38 #include "formats.h"
39 #include "framesync.h"
40 #include "internal.h"
41 #include "video.h"
42 
43 #define R 0
44 #define G 1
45 #define B 2
46 #define A 3
47 
53 };
54 
55 struct rgbvec {
56  float r, g, b;
57 };
58 
59 /* 3D LUT don't often go up to level 32, but it is common to have a Hald CLUT
60  * of 512x512 (64x64x64) */
61 #define MAX_LEVEL 256
62 #define PRELUT_SIZE 65536
63 
64 typedef struct Lut3DPreLut {
65  int size;
66  float min[3];
67  float max[3];
68  float scale[3];
69  float* lut[3];
70 } Lut3DPreLut;
71 
72 typedef struct LUT3DContext {
73  const AVClass *class;
74  int interpolation; ///<interp_mode
75  char *file;
76  uint8_t rgba_map[4];
77  int step;
79  struct rgbvec scale;
80  struct rgbvec *lut;
81  int lutsize;
82  int lutsize2;
84 #if CONFIG_HALDCLUT_FILTER
85  uint8_t clut_rgba_map[4];
86  int clut_step;
87  int clut_bits;
88  int clut_planar;
89  int clut_float;
90  int clut_width;
92 #endif
93 } LUT3DContext;
94 
95 typedef struct ThreadData {
96  AVFrame *in, *out;
97 } ThreadData;
98 
99 #define OFFSET(x) offsetof(LUT3DContext, x)
100 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
101 #define COMMON_OPTIONS \
102  { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, FLAGS, "interp_mode" }, \
103  { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
104  { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
105  { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
106  { NULL }
107 
108 #define EXPONENT_MASK 0x7F800000
109 #define MANTISSA_MASK 0x007FFFFF
110 #define SIGN_MASK 0x7FFFFFFF
111 
112 static inline float sanitizef(float f)
113 {
114  union av_intfloat32 t;
115  t.f = f;
116 
117  if ((t.i & EXPONENT_MASK) == EXPONENT_MASK) {
118  if ((t.i & MANTISSA_MASK) != 0) {
119  // NAN
120  return 0.0f;
121  } else if (t.i & SIGN_MASK) {
122  // -INF
123  return FLT_MIN;
124  } else {
125  // +INF
126  return FLT_MAX;
127  }
128  }
129  return f;
130 }
131 
132 static inline float lerpf(float v0, float v1, float f)
133 {
134  return v0 + (v1 - v0) * f;
135 }
136 
137 static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
138 {
139  struct rgbvec v = {
140  lerpf(v0->r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f)
141  };
142  return v;
143 }
144 
145 #define NEAR(x) ((int)((x) + .5))
146 #define PREV(x) ((int)(x))
147 #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
148 
149 /**
150  * Get the nearest defined point
151  */
152 static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d,
153  const struct rgbvec *s)
154 {
155  return lut3d->lut[NEAR(s->r) * lut3d->lutsize2 + NEAR(s->g) * lut3d->lutsize + NEAR(s->b)];
156 }
157 
158 /**
159  * Interpolate using the 8 vertices of a cube
160  * @see https://en.wikipedia.org/wiki/Trilinear_interpolation
161  */
162 static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d,
163  const struct rgbvec *s)
164 {
165  const int lutsize2 = lut3d->lutsize2;
166  const int lutsize = lut3d->lutsize;
167  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
168  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
169  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
170  const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
171  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
172  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
173  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
174  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
175  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
176  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
177  const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
178  const struct rgbvec c00 = lerp(&c000, &c100, d.r);
179  const struct rgbvec c10 = lerp(&c010, &c110, d.r);
180  const struct rgbvec c01 = lerp(&c001, &c101, d.r);
181  const struct rgbvec c11 = lerp(&c011, &c111, d.r);
182  const struct rgbvec c0 = lerp(&c00, &c10, d.g);
183  const struct rgbvec c1 = lerp(&c01, &c11, d.g);
184  const struct rgbvec c = lerp(&c0, &c1, d.b);
185  return c;
186 }
187 
188 /**
189  * Tetrahedral interpolation. Based on code found in Truelight Software Library paper.
190  * @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf
191  */
192 static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d,
193  const struct rgbvec *s)
194 {
195  const int lutsize2 = lut3d->lutsize2;
196  const int lutsize = lut3d->lutsize;
197  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
198  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
199  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
200  const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
201  const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
202  struct rgbvec c;
203  if (d.r > d.g) {
204  if (d.g > d.b) {
205  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
206  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
207  c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r;
208  c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g;
209  c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b;
210  } else if (d.r > d.b) {
211  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
212  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
213  c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r;
214  c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g;
215  c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b;
216  } else {
217  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
218  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
219  c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r;
220  c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g;
221  c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b;
222  }
223  } else {
224  if (d.b > d.g) {
225  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
226  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
227  c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r;
228  c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g;
229  c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b;
230  } else if (d.b > d.r) {
231  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
232  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
233  c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r;
234  c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g;
235  c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b;
236  } else {
237  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
238  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
239  c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r;
240  c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g;
241  c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b;
242  }
243  }
244  return c;
245 }
246 
247 static inline float prelut_interp_1d_linear(const Lut3DPreLut *prelut,
248  int idx, const float s)
249 {
250  const int lut_max = prelut->size - 1;
251  const float scaled = (s - prelut->min[idx]) * prelut->scale[idx];
252  const float x = av_clipf(scaled, 0.0f, lut_max);
253  const int prev = PREV(x);
254  const int next = FFMIN((int)(x) + 1, lut_max);
255  const float p = prelut->lut[idx][prev];
256  const float n = prelut->lut[idx][next];
257  const float d = x - (float)prev;
258  return lerpf(p, n, d);
259 }
260 
261 static inline struct rgbvec apply_prelut(const Lut3DPreLut *prelut,
262  const struct rgbvec *s)
263 {
264  struct rgbvec c;
265 
266  if (prelut->size <= 0)
267  return *s;
268 
269  c.r = prelut_interp_1d_linear(prelut, 0, s->r);
270  c.g = prelut_interp_1d_linear(prelut, 1, s->g);
271  c.b = prelut_interp_1d_linear(prelut, 2, s->b);
272  return c;
273 }
274 
275 #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \
276 static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
277 { \
278  int x, y; \
279  const LUT3DContext *lut3d = ctx->priv; \
280  const Lut3DPreLut *prelut = &lut3d->prelut; \
281  const ThreadData *td = arg; \
282  const AVFrame *in = td->in; \
283  const AVFrame *out = td->out; \
284  const int direct = out == in; \
285  const int slice_start = (in->height * jobnr ) / nb_jobs; \
286  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
287  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
288  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
289  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
290  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
291  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
292  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
293  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
294  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
295  const float lut_max = lut3d->lutsize - 1; \
296  const float scale_f = 1.0f / ((1<<depth) - 1); \
297  const float scale_r = lut3d->scale.r * lut_max; \
298  const float scale_g = lut3d->scale.g * lut_max; \
299  const float scale_b = lut3d->scale.b * lut_max; \
300  \
301  for (y = slice_start; y < slice_end; y++) { \
302  uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
303  uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
304  uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
305  uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
306  const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
307  const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
308  const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
309  const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
310  for (x = 0; x < in->width; x++) { \
311  const struct rgbvec rgb = {srcr[x] * scale_f, \
312  srcg[x] * scale_f, \
313  srcb[x] * scale_f}; \
314  const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
315  const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
316  av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
317  av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
318  struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
319  dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth); \
320  dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth); \
321  dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth); \
322  if (!direct && in->linesize[3]) \
323  dsta[x] = srca[x]; \
324  } \
325  grow += out->linesize[0]; \
326  brow += out->linesize[1]; \
327  rrow += out->linesize[2]; \
328  arow += out->linesize[3]; \
329  srcgrow += in->linesize[0]; \
330  srcbrow += in->linesize[1]; \
331  srcrrow += in->linesize[2]; \
332  srcarow += in->linesize[3]; \
333  } \
334  return 0; \
335 }
336 
337 DEFINE_INTERP_FUNC_PLANAR(nearest, 8, 8)
338 DEFINE_INTERP_FUNC_PLANAR(trilinear, 8, 8)
339 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 8, 8)
340 
341 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 9)
342 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 9)
343 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 9)
344 
345 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 10)
346 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 10)
347 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 10)
348 
349 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 12)
350 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 12)
351 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 12)
352 
353 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 14)
354 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 14)
355 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 14)
356 
357 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 16)
358 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 16)
359 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 16)
360 
361 #define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth) \
362 static int interp_##name##_pf##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
363 { \
364  int x, y; \
365  const LUT3DContext *lut3d = ctx->priv; \
366  const Lut3DPreLut *prelut = &lut3d->prelut; \
367  const ThreadData *td = arg; \
368  const AVFrame *in = td->in; \
369  const AVFrame *out = td->out; \
370  const int direct = out == in; \
371  const int slice_start = (in->height * jobnr ) / nb_jobs; \
372  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
373  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
374  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
375  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
376  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
377  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
378  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
379  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
380  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
381  const float lut_max = lut3d->lutsize - 1; \
382  const float scale_r = lut3d->scale.r * lut_max; \
383  const float scale_g = lut3d->scale.g * lut_max; \
384  const float scale_b = lut3d->scale.b * lut_max; \
385  \
386  for (y = slice_start; y < slice_end; y++) { \
387  float *dstg = (float *)grow; \
388  float *dstb = (float *)brow; \
389  float *dstr = (float *)rrow; \
390  float *dsta = (float *)arow; \
391  const float *srcg = (const float *)srcgrow; \
392  const float *srcb = (const float *)srcbrow; \
393  const float *srcr = (const float *)srcrrow; \
394  const float *srca = (const float *)srcarow; \
395  for (x = 0; x < in->width; x++) { \
396  const struct rgbvec rgb = {sanitizef(srcr[x]), \
397  sanitizef(srcg[x]), \
398  sanitizef(srcb[x])}; \
399  const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
400  const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
401  av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
402  av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
403  struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
404  dstr[x] = vec.r; \
405  dstg[x] = vec.g; \
406  dstb[x] = vec.b; \
407  if (!direct && in->linesize[3]) \
408  dsta[x] = srca[x]; \
409  } \
410  grow += out->linesize[0]; \
411  brow += out->linesize[1]; \
412  rrow += out->linesize[2]; \
413  arow += out->linesize[3]; \
414  srcgrow += in->linesize[0]; \
415  srcbrow += in->linesize[1]; \
416  srcrrow += in->linesize[2]; \
417  srcarow += in->linesize[3]; \
418  } \
419  return 0; \
420 }
421 
423 DEFINE_INTERP_FUNC_PLANAR_FLOAT(trilinear, 32)
424 DEFINE_INTERP_FUNC_PLANAR_FLOAT(tetrahedral, 32)
425 
426 #define DEFINE_INTERP_FUNC(name, nbits) \
427 static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
428 { \
429  int x, y; \
430  const LUT3DContext *lut3d = ctx->priv; \
431  const Lut3DPreLut *prelut = &lut3d->prelut; \
432  const ThreadData *td = arg; \
433  const AVFrame *in = td->in; \
434  const AVFrame *out = td->out; \
435  const int direct = out == in; \
436  const int step = lut3d->step; \
437  const uint8_t r = lut3d->rgba_map[R]; \
438  const uint8_t g = lut3d->rgba_map[G]; \
439  const uint8_t b = lut3d->rgba_map[B]; \
440  const uint8_t a = lut3d->rgba_map[A]; \
441  const int slice_start = (in->height * jobnr ) / nb_jobs; \
442  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
443  uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
444  const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
445  const float lut_max = lut3d->lutsize - 1; \
446  const float scale_f = 1.0f / ((1<<nbits) - 1); \
447  const float scale_r = lut3d->scale.r * lut_max; \
448  const float scale_g = lut3d->scale.g * lut_max; \
449  const float scale_b = lut3d->scale.b * lut_max; \
450  \
451  for (y = slice_start; y < slice_end; y++) { \
452  uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
453  const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
454  for (x = 0; x < in->width * step; x += step) { \
455  const struct rgbvec rgb = {src[x + r] * scale_f, \
456  src[x + g] * scale_f, \
457  src[x + b] * scale_f}; \
458  const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
459  const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
460  av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
461  av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
462  struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
463  dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \
464  dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \
465  dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \
466  if (!direct && step == 4) \
467  dst[x + a] = src[x + a]; \
468  } \
469  dstrow += out->linesize[0]; \
470  srcrow += in ->linesize[0]; \
471  } \
472  return 0; \
473 }
474 
475 DEFINE_INTERP_FUNC(nearest, 8)
476 DEFINE_INTERP_FUNC(trilinear, 8)
477 DEFINE_INTERP_FUNC(tetrahedral, 8)
478 
479 DEFINE_INTERP_FUNC(nearest, 16)
480 DEFINE_INTERP_FUNC(trilinear, 16)
481 DEFINE_INTERP_FUNC(tetrahedral, 16)
482 
483 #define MAX_LINE_SIZE 512
484 
485 static int skip_line(const char *p)
486 {
487  while (*p && av_isspace(*p))
488  p++;
489  return !*p || *p == '#';
490 }
491 
492 static char* fget_next_word(char* dst, int max, FILE* f)
493 {
494  int c;
495  char *p = dst;
496 
497  /* for null */
498  max--;
499  /* skip until next non whitespace char */
500  while ((c = fgetc(f)) != EOF) {
501  if (av_isspace(c))
502  continue;
503 
504  *p++ = c;
505  max--;
506  break;
507  }
508 
509  /* get max bytes or up until next whitespace char */
510  for (; max > 0; max--) {
511  if ((c = fgetc(f)) == EOF)
512  break;
513 
514  if (av_isspace(c))
515  break;
516 
517  *p++ = c;
518  }
519 
520  *p = 0;
521  if (p == dst)
522  return NULL;
523  return p;
524 }
525 
526 #define NEXT_LINE(loop_cond) do { \
527  if (!fgets(line, sizeof(line), f)) { \
528  av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
529  return AVERROR_INVALIDDATA; \
530  } \
531 } while (loop_cond)
532 
533 #define NEXT_LINE_OR_GOTO(loop_cond, label) do { \
534  if (!fgets(line, sizeof(line), f)) { \
535  av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
536  ret = AVERROR_INVALIDDATA; \
537  goto label; \
538  } \
539 } while (loop_cond)
540 
541 static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut)
542 {
543  LUT3DContext *lut3d = ctx->priv;
544  int i;
545  if (lutsize < 2 || lutsize > MAX_LEVEL) {
546  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
547  return AVERROR(EINVAL);
548  }
549 
550  av_freep(&lut3d->lut);
551  lut3d->lut = av_malloc_array(lutsize * lutsize * lutsize, sizeof(*lut3d->lut));
552  if (!lut3d->lut)
553  return AVERROR(ENOMEM);
554 
555  if (prelut) {
556  lut3d->prelut.size = PRELUT_SIZE;
557  for (i = 0; i < 3; i++) {
558  av_freep(&lut3d->prelut.lut[i]);
559  lut3d->prelut.lut[i] = av_malloc_array(PRELUT_SIZE, sizeof(*lut3d->prelut.lut[0]));
560  if (!lut3d->prelut.lut[i])
561  return AVERROR(ENOMEM);
562  }
563  } else {
564  lut3d->prelut.size = 0;
565  for (i = 0; i < 3; i++) {
566  av_freep(&lut3d->prelut.lut[i]);
567  }
568  }
569  lut3d->lutsize = lutsize;
570  lut3d->lutsize2 = lutsize * lutsize;
571  return 0;
572 }
573 
574 /* Basically r g and b float values on each line, with a facultative 3DLUTSIZE
575  * directive; seems to be generated by Davinci */
576 static int parse_dat(AVFilterContext *ctx, FILE *f)
577 {
578  LUT3DContext *lut3d = ctx->priv;
579  char line[MAX_LINE_SIZE];
580  int ret, i, j, k, size, size2;
581 
582  lut3d->lutsize = size = 33;
583  size2 = size * size;
584 
585  NEXT_LINE(skip_line(line));
586  if (!strncmp(line, "3DLUTSIZE ", 10)) {
587  size = strtol(line + 10, NULL, 0);
588 
589  NEXT_LINE(skip_line(line));
590  }
591 
592  ret = allocate_3dlut(ctx, size, 0);
593  if (ret < 0)
594  return ret;
595 
596  for (k = 0; k < size; k++) {
597  for (j = 0; j < size; j++) {
598  for (i = 0; i < size; i++) {
599  struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
600  if (k != 0 || j != 0 || i != 0)
601  NEXT_LINE(skip_line(line));
602  if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
603  return AVERROR_INVALIDDATA;
604  }
605  }
606  }
607  return 0;
608 }
609 
610 /* Iridas format */
611 static int parse_cube(AVFilterContext *ctx, FILE *f)
612 {
613  LUT3DContext *lut3d = ctx->priv;
614  char line[MAX_LINE_SIZE];
615  float min[3] = {0.0, 0.0, 0.0};
616  float max[3] = {1.0, 1.0, 1.0};
617 
618  while (fgets(line, sizeof(line), f)) {
619  if (!strncmp(line, "LUT_3D_SIZE", 11)) {
620  int ret, i, j, k;
621  const int size = strtol(line + 12, NULL, 0);
622  const int size2 = size * size;
623 
624  ret = allocate_3dlut(ctx, size, 0);
625  if (ret < 0)
626  return ret;
627 
628  for (k = 0; k < size; k++) {
629  for (j = 0; j < size; j++) {
630  for (i = 0; i < size; i++) {
631  struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k];
632 
633  do {
634 try_again:
635  NEXT_LINE(0);
636  if (!strncmp(line, "DOMAIN_", 7)) {
637  float *vals = NULL;
638  if (!strncmp(line + 7, "MIN ", 4)) vals = min;
639  else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
640  if (!vals)
641  return AVERROR_INVALIDDATA;
642  av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
643  av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
644  min[0], min[1], min[2], max[0], max[1], max[2]);
645  goto try_again;
646  } else if (!strncmp(line, "TITLE", 5)) {
647  goto try_again;
648  }
649  } while (skip_line(line));
650  if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
651  return AVERROR_INVALIDDATA;
652  }
653  }
654  }
655  break;
656  }
657  }
658 
659  lut3d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
660  lut3d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
661  lut3d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
662 
663  return 0;
664 }
665 
666 /* Assume 17x17x17 LUT with a 16-bit depth
667  * FIXME: it seems there are various 3dl formats */
668 static int parse_3dl(AVFilterContext *ctx, FILE *f)
669 {
670  char line[MAX_LINE_SIZE];
671  LUT3DContext *lut3d = ctx->priv;
672  int ret, i, j, k;
673  const int size = 17;
674  const int size2 = 17 * 17;
675  const float scale = 16*16*16;
676 
677  lut3d->lutsize = size;
678 
679  ret = allocate_3dlut(ctx, size, 0);
680  if (ret < 0)
681  return ret;
682 
683  NEXT_LINE(skip_line(line));
684  for (k = 0; k < size; k++) {
685  for (j = 0; j < size; j++) {
686  for (i = 0; i < size; i++) {
687  int r, g, b;
688  struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
689 
690  NEXT_LINE(skip_line(line));
691  if (av_sscanf(line, "%d %d %d", &r, &g, &b) != 3)
692  return AVERROR_INVALIDDATA;
693  vec->r = r / scale;
694  vec->g = g / scale;
695  vec->b = b / scale;
696  }
697  }
698  }
699  return 0;
700 }
701 
702 /* Pandora format */
703 static int parse_m3d(AVFilterContext *ctx, FILE *f)
704 {
705  LUT3DContext *lut3d = ctx->priv;
706  float scale;
707  int ret, i, j, k, size, size2, in = -1, out = -1;
708  char line[MAX_LINE_SIZE];
709  uint8_t rgb_map[3] = {0, 1, 2};
710 
711  while (fgets(line, sizeof(line), f)) {
712  if (!strncmp(line, "in", 2)) in = strtol(line + 2, NULL, 0);
713  else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0);
714  else if (!strncmp(line, "values", 6)) {
715  const char *p = line + 6;
716 #define SET_COLOR(id) do { \
717  while (av_isspace(*p)) \
718  p++; \
719  switch (*p) { \
720  case 'r': rgb_map[id] = 0; break; \
721  case 'g': rgb_map[id] = 1; break; \
722  case 'b': rgb_map[id] = 2; break; \
723  } \
724  while (*p && !av_isspace(*p)) \
725  p++; \
726 } while (0)
727  SET_COLOR(0);
728  SET_COLOR(1);
729  SET_COLOR(2);
730  break;
731  }
732  }
733 
734  if (in == -1 || out == -1) {
735  av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n");
736  return AVERROR_INVALIDDATA;
737  }
738  if (in < 2 || out < 2 ||
741  av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out);
742  return AVERROR_INVALIDDATA;
743  }
744  for (size = 1; size*size*size < in; size++);
745  lut3d->lutsize = size;
746  size2 = size * size;
747 
748  ret = allocate_3dlut(ctx, size, 0);
749  if (ret < 0)
750  return ret;
751 
752  scale = 1. / (out - 1);
753 
754  for (k = 0; k < size; k++) {
755  for (j = 0; j < size; j++) {
756  for (i = 0; i < size; i++) {
757  struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
758  float val[3];
759 
760  NEXT_LINE(0);
761  if (av_sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3)
762  return AVERROR_INVALIDDATA;
763  vec->r = val[rgb_map[0]] * scale;
764  vec->g = val[rgb_map[1]] * scale;
765  vec->b = val[rgb_map[2]] * scale;
766  }
767  }
768  }
769  return 0;
770 }
771 
772 static int nearest_sample_index(float *data, float x, int low, int hi)
773 {
774  int mid;
775  if (x < data[low])
776  return low;
777 
778  if (x > data[hi])
779  return hi;
780 
781  for (;;) {
782  av_assert0(x >= data[low]);
783  av_assert0(x <= data[hi]);
784  av_assert0((hi-low) > 0);
785 
786  if (hi - low == 1)
787  return low;
788 
789  mid = (low + hi) / 2;
790 
791  if (x < data[mid])
792  hi = mid;
793  else
794  low = mid;
795  }
796 
797  return 0;
798 }
799 
800 #define NEXT_FLOAT_OR_GOTO(value, label) \
801  if (!fget_next_word(line, sizeof(line) ,f)) { \
802  ret = AVERROR_INVALIDDATA; \
803  goto label; \
804  } \
805  if (av_sscanf(line, "%f", &value) != 1) { \
806  ret = AVERROR_INVALIDDATA; \
807  goto label; \
808  }
809 
811 {
812  LUT3DContext *lut3d = ctx->priv;
813  char line[MAX_LINE_SIZE];
814  float in_min[3] = {0.0, 0.0, 0.0};
815  float in_max[3] = {1.0, 1.0, 1.0};
816  float out_min[3] = {0.0, 0.0, 0.0};
817  float out_max[3] = {1.0, 1.0, 1.0};
818  int inside_metadata = 0, size, size2;
819  int prelut = 0;
820  int ret = 0;
821 
822  int prelut_sizes[3] = {0, 0, 0};
823  float *in_prelut[3] = {NULL, NULL, NULL};
824  float *out_prelut[3] = {NULL, NULL, NULL};
825 
827  if (strncmp(line, "CSPLUTV100", 10)) {
828  av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n");
829  ret = AVERROR(EINVAL);
830  goto end;
831  }
832 
834  if (strncmp(line, "3D", 2)) {
835  av_log(ctx, AV_LOG_ERROR, "Not 3D LUT format\n");
836  ret = AVERROR(EINVAL);
837  goto end;
838  }
839 
840  while (1) {
842 
843  if (!strncmp(line, "BEGIN METADATA", 14)) {
844  inside_metadata = 1;
845  continue;
846  }
847  if (!strncmp(line, "END METADATA", 12)) {
848  inside_metadata = 0;
849  continue;
850  }
851  if (inside_metadata == 0) {
852  int size_r, size_g, size_b;
853 
854  for (int i = 0; i < 3; i++) {
855  int npoints = strtol(line, NULL, 0);
856 
857  if (npoints > 2) {
858  float v,last;
859 
860  if (npoints > PRELUT_SIZE) {
861  av_log(ctx, AV_LOG_ERROR, "Prelut size too large.\n");
862  ret = AVERROR_INVALIDDATA;
863  goto end;
864  }
865 
866  if (in_prelut[i] || out_prelut[i]) {
867  av_log(ctx, AV_LOG_ERROR, "Invalid file has multiple preluts.\n");
868  ret = AVERROR_INVALIDDATA;
869  goto end;
870  }
871 
872  in_prelut[i] = (float*)av_malloc(npoints * sizeof(float));
873  out_prelut[i] = (float*)av_malloc(npoints * sizeof(float));
874  if (!in_prelut[i] || !out_prelut[i]) {
875  ret = AVERROR(ENOMEM);
876  goto end;
877  }
878 
879  prelut_sizes[i] = npoints;
880  in_min[i] = FLT_MAX;
881  in_max[i] = FLT_MIN;
882  out_min[i] = FLT_MAX;
883  out_max[i] = FLT_MIN;
884 
885  last = FLT_MIN;
886 
887  for (int j = 0; j < npoints; j++) {
889  in_min[i] = FFMIN(in_min[i], v);
890  in_max[i] = FFMAX(in_max[i], v);
891  in_prelut[i][j] = v;
892  if (v < last) {
893  av_log(ctx, AV_LOG_ERROR, "Invalid file, non increasing prelut.\n");
894  ret = AVERROR(ENOMEM);
895  goto end;
896  }
897  last = v;
898  }
899 
900  for (int j = 0; j < npoints; j++) {
902  out_min[i] = FFMIN(out_min[i], v);
903  out_max[i] = FFMAX(out_max[i], v);
904  out_prelut[i][j] = v;
905  }
906 
907  } else if (npoints == 2) {
909  if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2) {
910  ret = AVERROR_INVALIDDATA;
911  goto end;
912  }
914  if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2) {
915  ret = AVERROR_INVALIDDATA;
916  goto end;
917  }
918 
919  } else {
920  av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n");
921  ret = AVERROR_PATCHWELCOME;
922  goto end;
923  }
924 
926  }
927 
928  if (av_sscanf(line, "%d %d %d", &size_r, &size_g, &size_b) != 3) {
929  ret = AVERROR(EINVAL);
930  goto end;
931  }
932  if (size_r != size_g || size_r != size_b) {
933  av_log(ctx, AV_LOG_ERROR, "Unsupported size combination: %dx%dx%d.\n", size_r, size_g, size_b);
934  ret = AVERROR_PATCHWELCOME;
935  goto end;
936  }
937 
938  size = size_r;
939  size2 = size * size;
940 
941  if (prelut_sizes[0] && prelut_sizes[1] && prelut_sizes[2])
942  prelut = 1;
943 
944  ret = allocate_3dlut(ctx, size, prelut);
945  if (ret < 0)
946  return ret;
947 
948  for (int k = 0; k < size; k++) {
949  for (int j = 0; j < size; j++) {
950  for (int i = 0; i < size; i++) {
951  struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k];
952 
954  if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) {
955  ret = AVERROR_INVALIDDATA;
956  goto end;
957  }
958 
959  vec->r *= out_max[0] - out_min[0];
960  vec->g *= out_max[1] - out_min[1];
961  vec->b *= out_max[2] - out_min[2];
962  }
963  }
964  }
965 
966  break;
967  }
968  }
969 
970  if (prelut) {
971  for (int c = 0; c < 3; c++) {
972 
973  lut3d->prelut.min[c] = in_min[c];
974  lut3d->prelut.max[c] = in_max[c];
975  lut3d->prelut.scale[c] = (1.0f / (float)(in_max[c] - in_min[c])) * (lut3d->prelut.size - 1);
976 
977  for (int i = 0; i < lut3d->prelut.size; ++i) {
978  float mix = (float) i / (float)(lut3d->prelut.size - 1);
979  float x = lerpf(in_min[c], in_max[c], mix), a, b;
980 
981  int idx = nearest_sample_index(in_prelut[c], x, 0, prelut_sizes[c]-1);
982  av_assert0(idx + 1 < prelut_sizes[c]);
983 
984  a = out_prelut[c][idx + 0];
985  b = out_prelut[c][idx + 1];
986  mix = x - in_prelut[c][idx];
987 
988  lut3d->prelut.lut[c][i] = sanitizef(lerpf(a, b, mix));
989  }
990  }
991  lut3d->scale.r = 1.00f;
992  lut3d->scale.g = 1.00f;
993  lut3d->scale.b = 1.00f;
994 
995  } else {
996  lut3d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
997  lut3d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
998  lut3d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
999  }
1000 
1001 end:
1002  for (int c = 0; c < 3; c++) {
1003  av_freep(&in_prelut[c]);
1004  av_freep(&out_prelut[c]);
1005  }
1006  return ret;
1007 }
1008 
1010 {
1011  LUT3DContext *lut3d = ctx->priv;
1012  int ret, i, j, k;
1013  const int size2 = size * size;
1014  const float c = 1. / (size - 1);
1015 
1016  ret = allocate_3dlut(ctx, size, 0);
1017  if (ret < 0)
1018  return ret;
1019 
1020  for (k = 0; k < size; k++) {
1021  for (j = 0; j < size; j++) {
1022  for (i = 0; i < size; i++) {
1023  struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
1024  vec->r = k * c;
1025  vec->g = j * c;
1026  vec->b = i * c;
1027  }
1028  }
1029  }
1030 
1031  return 0;
1032 }
1033 
1035 {
1036  static const enum AVPixelFormat pix_fmts[] = {
1052  };
1053  AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
1054  if (!fmts_list)
1055  return AVERROR(ENOMEM);
1056  return ff_set_common_formats(ctx, fmts_list);
1057 }
1058 
1059 static int config_input(AVFilterLink *inlink)
1060 {
1061  int depth, is16bit, isfloat, planar;
1062  LUT3DContext *lut3d = inlink->dst->priv;
1064 
1065  depth = desc->comp[0].depth;
1066  is16bit = desc->comp[0].depth > 8;
1067  planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
1068  isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
1069  ff_fill_rgba_map(lut3d->rgba_map, inlink->format);
1070  lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
1071 
1072 #define SET_FUNC(name) do { \
1073  if (planar && !isfloat) { \
1074  switch (depth) { \
1075  case 8: lut3d->interp = interp_8_##name##_p8; break; \
1076  case 9: lut3d->interp = interp_16_##name##_p9; break; \
1077  case 10: lut3d->interp = interp_16_##name##_p10; break; \
1078  case 12: lut3d->interp = interp_16_##name##_p12; break; \
1079  case 14: lut3d->interp = interp_16_##name##_p14; break; \
1080  case 16: lut3d->interp = interp_16_##name##_p16; break; \
1081  } \
1082  } else if (isfloat) { lut3d->interp = interp_##name##_pf32; \
1083  } else if (is16bit) { lut3d->interp = interp_16_##name; \
1084  } else { lut3d->interp = interp_8_##name; } \
1085 } while (0)
1086 
1087  switch (lut3d->interpolation) {
1088  case INTERPOLATE_NEAREST: SET_FUNC(nearest); break;
1089  case INTERPOLATE_TRILINEAR: SET_FUNC(trilinear); break;
1090  case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral); break;
1091  default:
1092  av_assert0(0);
1093  }
1094 
1095  return 0;
1096 }
1097 
1099 {
1100  AVFilterContext *ctx = inlink->dst;
1101  LUT3DContext *lut3d = ctx->priv;
1102  AVFilterLink *outlink = inlink->dst->outputs[0];
1103  AVFrame *out;
1104  ThreadData td;
1105 
1106  if (av_frame_is_writable(in)) {
1107  out = in;
1108  } else {
1109  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
1110  if (!out) {
1111  av_frame_free(&in);
1112  return NULL;
1113  }
1114  av_frame_copy_props(out, in);
1115  }
1116 
1117  td.in = in;
1118  td.out = out;
1119  ctx->internal->execute(ctx, lut3d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
1120 
1121  if (out != in)
1122  av_frame_free(&in);
1123 
1124  return out;
1125 }
1126 
1127 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
1128 {
1129  AVFilterLink *outlink = inlink->dst->outputs[0];
1130  AVFrame *out = apply_lut(inlink, in);
1131  if (!out)
1132  return AVERROR(ENOMEM);
1133  return ff_filter_frame(outlink, out);
1134 }
1135 
1136 #if CONFIG_LUT3D_FILTER
1137 static const AVOption lut3d_options[] = {
1138  { "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
1140 };
1141 
1142 AVFILTER_DEFINE_CLASS(lut3d);
1143 
1144 static av_cold int lut3d_init(AVFilterContext *ctx)
1145 {
1146  int ret;
1147  FILE *f;
1148  const char *ext;
1149  LUT3DContext *lut3d = ctx->priv;
1150 
1151  lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
1152 
1153  if (!lut3d->file) {
1154  return set_identity_matrix(ctx, 32);
1155  }
1156 
1157  f = av_fopen_utf8(lut3d->file, "r");
1158  if (!f) {
1159  ret = AVERROR(errno);
1160  av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret));
1161  return ret;
1162  }
1163 
1164  ext = strrchr(lut3d->file, '.');
1165  if (!ext) {
1166  av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
1167  ret = AVERROR_INVALIDDATA;
1168  goto end;
1169  }
1170  ext++;
1171 
1172  if (!av_strcasecmp(ext, "dat")) {
1173  ret = parse_dat(ctx, f);
1174  } else if (!av_strcasecmp(ext, "3dl")) {
1175  ret = parse_3dl(ctx, f);
1176  } else if (!av_strcasecmp(ext, "cube")) {
1177  ret = parse_cube(ctx, f);
1178  } else if (!av_strcasecmp(ext, "m3d")) {
1179  ret = parse_m3d(ctx, f);
1180  } else if (!av_strcasecmp(ext, "csp")) {
1181  ret = parse_cinespace(ctx, f);
1182  } else {
1183  av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
1184  ret = AVERROR(EINVAL);
1185  }
1186 
1187  if (!ret && !lut3d->lutsize) {
1188  av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n");
1189  ret = AVERROR_INVALIDDATA;
1190  }
1191 
1192 end:
1193  fclose(f);
1194  return ret;
1195 }
1196 
1197 static av_cold void lut3d_uninit(AVFilterContext *ctx)
1198 {
1199  LUT3DContext *lut3d = ctx->priv;
1200  int i;
1201  av_freep(&lut3d->lut);
1202 
1203  for (i = 0; i < 3; i++) {
1204  av_freep(&lut3d->prelut.lut[i]);
1205  }
1206 }
1207 
1208 static const AVFilterPad lut3d_inputs[] = {
1209  {
1210  .name = "default",
1211  .type = AVMEDIA_TYPE_VIDEO,
1212  .filter_frame = filter_frame,
1213  .config_props = config_input,
1214  },
1215  { NULL }
1216 };
1217 
1218 static const AVFilterPad lut3d_outputs[] = {
1219  {
1220  .name = "default",
1221  .type = AVMEDIA_TYPE_VIDEO,
1222  },
1223  { NULL }
1224 };
1225 
1227  .name = "lut3d",
1228  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."),
1229  .priv_size = sizeof(LUT3DContext),
1230  .init = lut3d_init,
1231  .uninit = lut3d_uninit,
1233  .inputs = lut3d_inputs,
1234  .outputs = lut3d_outputs,
1235  .priv_class = &lut3d_class,
1237 };
1238 #endif
1239 
1240 #if CONFIG_HALDCLUT_FILTER
1241 
1242 static void update_clut_packed(LUT3DContext *lut3d, const AVFrame *frame)
1243 {
1244  const uint8_t *data = frame->data[0];
1245  const int linesize = frame->linesize[0];
1246  const int w = lut3d->clut_width;
1247  const int step = lut3d->clut_step;
1248  const uint8_t *rgba_map = lut3d->clut_rgba_map;
1249  const int level = lut3d->lutsize;
1250  const int level2 = lut3d->lutsize2;
1251 
1252 #define LOAD_CLUT(nbits) do { \
1253  int i, j, k, x = 0, y = 0; \
1254  \
1255  for (k = 0; k < level; k++) { \
1256  for (j = 0; j < level; j++) { \
1257  for (i = 0; i < level; i++) { \
1258  const uint##nbits##_t *src = (const uint##nbits##_t *) \
1259  (data + y*linesize + x*step); \
1260  struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1261  vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \
1262  vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \
1263  vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \
1264  if (++x == w) { \
1265  x = 0; \
1266  y++; \
1267  } \
1268  } \
1269  } \
1270  } \
1271 } while (0)
1272 
1273  switch (lut3d->clut_bits) {
1274  case 8: LOAD_CLUT(8); break;
1275  case 16: LOAD_CLUT(16); break;
1276  }
1277 }
1278 
1279 static void update_clut_planar(LUT3DContext *lut3d, const AVFrame *frame)
1280 {
1281  const uint8_t *datag = frame->data[0];
1282  const uint8_t *datab = frame->data[1];
1283  const uint8_t *datar = frame->data[2];
1284  const int glinesize = frame->linesize[0];
1285  const int blinesize = frame->linesize[1];
1286  const int rlinesize = frame->linesize[2];
1287  const int w = lut3d->clut_width;
1288  const int level = lut3d->lutsize;
1289  const int level2 = lut3d->lutsize2;
1290 
1291 #define LOAD_CLUT_PLANAR(nbits, depth) do { \
1292  int i, j, k, x = 0, y = 0; \
1293  \
1294  for (k = 0; k < level; k++) { \
1295  for (j = 0; j < level; j++) { \
1296  for (i = 0; i < level; i++) { \
1297  const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \
1298  (datag + y*glinesize); \
1299  const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \
1300  (datab + y*blinesize); \
1301  const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \
1302  (datar + y*rlinesize); \
1303  struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1304  vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \
1305  vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \
1306  vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \
1307  if (++x == w) { \
1308  x = 0; \
1309  y++; \
1310  } \
1311  } \
1312  } \
1313  } \
1314 } while (0)
1315 
1316  switch (lut3d->clut_bits) {
1317  case 8: LOAD_CLUT_PLANAR(8, 8); break;
1318  case 9: LOAD_CLUT_PLANAR(16, 9); break;
1319  case 10: LOAD_CLUT_PLANAR(16, 10); break;
1320  case 12: LOAD_CLUT_PLANAR(16, 12); break;
1321  case 14: LOAD_CLUT_PLANAR(16, 14); break;
1322  case 16: LOAD_CLUT_PLANAR(16, 16); break;
1323  }
1324 }
1325 
1326 static void update_clut_float(LUT3DContext *lut3d, const AVFrame *frame)
1327 {
1328  const uint8_t *datag = frame->data[0];
1329  const uint8_t *datab = frame->data[1];
1330  const uint8_t *datar = frame->data[2];
1331  const int glinesize = frame->linesize[0];
1332  const int blinesize = frame->linesize[1];
1333  const int rlinesize = frame->linesize[2];
1334  const int w = lut3d->clut_width;
1335  const int level = lut3d->lutsize;
1336  const int level2 = lut3d->lutsize2;
1337 
1338  int i, j, k, x = 0, y = 0;
1339 
1340  for (k = 0; k < level; k++) {
1341  for (j = 0; j < level; j++) {
1342  for (i = 0; i < level; i++) {
1343  const float *gsrc = (const float *)(datag + y*glinesize);
1344  const float *bsrc = (const float *)(datab + y*blinesize);
1345  const float *rsrc = (const float *)(datar + y*rlinesize);
1346  struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k];
1347  vec->r = rsrc[x];
1348  vec->g = gsrc[x];
1349  vec->b = bsrc[x];
1350  if (++x == w) {
1351  x = 0;
1352  y++;
1353  }
1354  }
1355  }
1356  }
1357 }
1358 
1359 static int config_output(AVFilterLink *outlink)
1360 {
1361  AVFilterContext *ctx = outlink->src;
1362  LUT3DContext *lut3d = ctx->priv;
1363  int ret;
1364 
1365  ret = ff_framesync_init_dualinput(&lut3d->fs, ctx);
1366  if (ret < 0)
1367  return ret;
1368  outlink->w = ctx->inputs[0]->w;
1369  outlink->h = ctx->inputs[0]->h;
1370  outlink->time_base = ctx->inputs[0]->time_base;
1371  if ((ret = ff_framesync_configure(&lut3d->fs)) < 0)
1372  return ret;
1373  return 0;
1374 }
1375 
1376 static int activate(AVFilterContext *ctx)
1377 {
1378  LUT3DContext *s = ctx->priv;
1379  return ff_framesync_activate(&s->fs);
1380 }
1381 
1382 static int config_clut(AVFilterLink *inlink)
1383 {
1384  int size, level, w, h;
1385  AVFilterContext *ctx = inlink->dst;
1386  LUT3DContext *lut3d = ctx->priv;
1388 
1389  av_assert0(desc);
1390 
1391  lut3d->clut_bits = desc->comp[0].depth;
1392  lut3d->clut_planar = av_pix_fmt_count_planes(inlink->format) > 1;
1393  lut3d->clut_float = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
1394 
1395  lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3;
1396  ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format);
1397 
1398  if (inlink->w > inlink->h)
1399  av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the "
1400  "Hald CLUT will be ignored\n", inlink->w - inlink->h);
1401  else if (inlink->w < inlink->h)
1402  av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the "
1403  "Hald CLUT will be ignored\n", inlink->h - inlink->w);
1404  lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h);
1405 
1406  for (level = 1; level*level*level < w; level++);
1407  size = level*level*level;
1408  if (size != w) {
1409  av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n");
1410  return AVERROR_INVALIDDATA;
1411  }
1412  av_assert0(w == h && w == size);
1413  level *= level;
1414  if (level > MAX_LEVEL) {
1415  const int max_clut_level = sqrt(MAX_LEVEL);
1416  const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
1417  av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT "
1418  "(maximum level is %d, or %dx%d CLUT)\n",
1419  max_clut_level, max_clut_size, max_clut_size);
1420  return AVERROR(EINVAL);
1421  }
1422 
1423  return allocate_3dlut(ctx, level, 0);
1424 }
1425 
1426 static int update_apply_clut(FFFrameSync *fs)
1427 {
1428  AVFilterContext *ctx = fs->parent;
1429  LUT3DContext *lut3d = ctx->priv;
1430  AVFilterLink *inlink = ctx->inputs[0];
1431  AVFrame *master, *second, *out;
1432  int ret;
1433 
1434  ret = ff_framesync_dualinput_get(fs, &master, &second);
1435  if (ret < 0)
1436  return ret;
1437  if (!second)
1438  return ff_filter_frame(ctx->outputs[0], master);
1439  if (lut3d->clut_float)
1440  update_clut_float(ctx->priv, second);
1441  else if (lut3d->clut_planar)
1442  update_clut_planar(ctx->priv, second);
1443  else
1444  update_clut_packed(ctx->priv, second);
1445  out = apply_lut(inlink, master);
1446  return ff_filter_frame(ctx->outputs[0], out);
1447 }
1448 
1449 static av_cold int haldclut_init(AVFilterContext *ctx)
1450 {
1451  LUT3DContext *lut3d = ctx->priv;
1452  lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
1453  lut3d->fs.on_event = update_apply_clut;
1454  return 0;
1455 }
1456 
1457 static av_cold void haldclut_uninit(AVFilterContext *ctx)
1458 {
1459  LUT3DContext *lut3d = ctx->priv;
1460  ff_framesync_uninit(&lut3d->fs);
1461  av_freep(&lut3d->lut);
1462 }
1463 
1464 static const AVOption haldclut_options[] = {
1465  COMMON_OPTIONS
1466 };
1467 
1468 FRAMESYNC_DEFINE_CLASS(haldclut, LUT3DContext, fs);
1469 
1470 static const AVFilterPad haldclut_inputs[] = {
1471  {
1472  .name = "main",
1473  .type = AVMEDIA_TYPE_VIDEO,
1474  .config_props = config_input,
1475  },{
1476  .name = "clut",
1477  .type = AVMEDIA_TYPE_VIDEO,
1478  .config_props = config_clut,
1479  },
1480  { NULL }
1481 };
1482 
1483 static const AVFilterPad haldclut_outputs[] = {
1484  {
1485  .name = "default",
1486  .type = AVMEDIA_TYPE_VIDEO,
1487  .config_props = config_output,
1488  },
1489  { NULL }
1490 };
1491 
1493  .name = "haldclut",
1494  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."),
1495  .priv_size = sizeof(LUT3DContext),
1496  .preinit = haldclut_framesync_preinit,
1497  .init = haldclut_init,
1498  .uninit = haldclut_uninit,
1500  .activate = activate,
1501  .inputs = haldclut_inputs,
1502  .outputs = haldclut_outputs,
1503  .priv_class = &haldclut_class,
1505 };
1506 #endif
1507 
1508 #if CONFIG_LUT1D_FILTER
1509 
1510 enum interp_1d_mode {
1511  INTERPOLATE_1D_NEAREST,
1512  INTERPOLATE_1D_LINEAR,
1513  INTERPOLATE_1D_CUBIC,
1514  INTERPOLATE_1D_COSINE,
1515  INTERPOLATE_1D_SPLINE,
1516  NB_INTERP_1D_MODE
1517 };
1518 
1519 #define MAX_1D_LEVEL 65536
1520 
1521 typedef struct LUT1DContext {
1522  const AVClass *class;
1523  char *file;
1524  int interpolation; ///<interp_1d_mode
1525  struct rgbvec scale;
1526  uint8_t rgba_map[4];
1527  int step;
1528  float lut[3][MAX_1D_LEVEL];
1529  int lutsize;
1530  avfilter_action_func *interp;
1531 } LUT1DContext;
1532 
1533 #undef OFFSET
1534 #define OFFSET(x) offsetof(LUT1DContext, x)
1535 
1536 static void set_identity_matrix_1d(LUT1DContext *lut1d, int size)
1537 {
1538  const float c = 1. / (size - 1);
1539  int i;
1540 
1541  lut1d->lutsize = size;
1542  for (i = 0; i < size; i++) {
1543  lut1d->lut[0][i] = i * c;
1544  lut1d->lut[1][i] = i * c;
1545  lut1d->lut[2][i] = i * c;
1546  }
1547 }
1548 
1549 static int parse_cinespace_1d(AVFilterContext *ctx, FILE *f)
1550 {
1551  LUT1DContext *lut1d = ctx->priv;
1552  char line[MAX_LINE_SIZE];
1553  float in_min[3] = {0.0, 0.0, 0.0};
1554  float in_max[3] = {1.0, 1.0, 1.0};
1555  float out_min[3] = {0.0, 0.0, 0.0};
1556  float out_max[3] = {1.0, 1.0, 1.0};
1557  int inside_metadata = 0, size;
1558 
1559  NEXT_LINE(skip_line(line));
1560  if (strncmp(line, "CSPLUTV100", 10)) {
1561  av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n");
1562  return AVERROR(EINVAL);
1563  }
1564 
1565  NEXT_LINE(skip_line(line));
1566  if (strncmp(line, "1D", 2)) {
1567  av_log(ctx, AV_LOG_ERROR, "Not 1D LUT format\n");
1568  return AVERROR(EINVAL);
1569  }
1570 
1571  while (1) {
1572  NEXT_LINE(skip_line(line));
1573 
1574  if (!strncmp(line, "BEGIN METADATA", 14)) {
1575  inside_metadata = 1;
1576  continue;
1577  }
1578  if (!strncmp(line, "END METADATA", 12)) {
1579  inside_metadata = 0;
1580  continue;
1581  }
1582  if (inside_metadata == 0) {
1583  for (int i = 0; i < 3; i++) {
1584  int npoints = strtol(line, NULL, 0);
1585 
1586  if (npoints != 2) {
1587  av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n");
1588  return AVERROR_PATCHWELCOME;
1589  }
1590 
1591  NEXT_LINE(skip_line(line));
1592  if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2)
1593  return AVERROR_INVALIDDATA;
1594  NEXT_LINE(skip_line(line));
1595  if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2)
1596  return AVERROR_INVALIDDATA;
1597  NEXT_LINE(skip_line(line));
1598  }
1599 
1600  size = strtol(line, NULL, 0);
1601 
1602  if (size < 2 || size > MAX_1D_LEVEL) {
1603  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
1604  return AVERROR(EINVAL);
1605  }
1606 
1607  lut1d->lutsize = size;
1608 
1609  for (int i = 0; i < size; i++) {
1610  NEXT_LINE(skip_line(line));
1611  if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
1612  return AVERROR_INVALIDDATA;
1613  lut1d->lut[0][i] *= out_max[0] - out_min[0];
1614  lut1d->lut[1][i] *= out_max[1] - out_min[1];
1615  lut1d->lut[2][i] *= out_max[2] - out_min[2];
1616  }
1617 
1618  break;
1619  }
1620  }
1621 
1622  lut1d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
1623  lut1d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
1624  lut1d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
1625 
1626  return 0;
1627 }
1628 
1629 static int parse_cube_1d(AVFilterContext *ctx, FILE *f)
1630 {
1631  LUT1DContext *lut1d = ctx->priv;
1632  char line[MAX_LINE_SIZE];
1633  float min[3] = {0.0, 0.0, 0.0};
1634  float max[3] = {1.0, 1.0, 1.0};
1635 
1636  while (fgets(line, sizeof(line), f)) {
1637  if (!strncmp(line, "LUT_1D_SIZE", 11)) {
1638  const int size = strtol(line + 12, NULL, 0);
1639  int i;
1640 
1641  if (size < 2 || size > MAX_1D_LEVEL) {
1642  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
1643  return AVERROR(EINVAL);
1644  }
1645  lut1d->lutsize = size;
1646  for (i = 0; i < size; i++) {
1647  do {
1648 try_again:
1649  NEXT_LINE(0);
1650  if (!strncmp(line, "DOMAIN_", 7)) {
1651  float *vals = NULL;
1652  if (!strncmp(line + 7, "MIN ", 4)) vals = min;
1653  else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
1654  if (!vals)
1655  return AVERROR_INVALIDDATA;
1656  av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
1657  av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
1658  min[0], min[1], min[2], max[0], max[1], max[2]);
1659  goto try_again;
1660  } else if (!strncmp(line, "LUT_1D_INPUT_RANGE ", 19)) {
1661  av_sscanf(line + 19, "%f %f", min, max);
1662  min[1] = min[2] = min[0];
1663  max[1] = max[2] = max[0];
1664  goto try_again;
1665  } else if (!strncmp(line, "TITLE", 5)) {
1666  goto try_again;
1667  }
1668  } while (skip_line(line));
1669  if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
1670  return AVERROR_INVALIDDATA;
1671  }
1672  break;
1673  }
1674  }
1675 
1676  lut1d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
1677  lut1d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
1678  lut1d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
1679 
1680  return 0;
1681 }
1682 
1683 static const AVOption lut1d_options[] = {
1684  { "file", "set 1D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
1685  { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_1D_LINEAR}, 0, NB_INTERP_1D_MODE-1, FLAGS, "interp_mode" },
1686  { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, INT_MIN, INT_MAX, FLAGS, "interp_mode" },
1687  { "linear", "use values from the linear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, INT_MIN, INT_MAX, FLAGS, "interp_mode" },
1688  { "cosine", "use values from the cosine interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE}, INT_MIN, INT_MAX, FLAGS, "interp_mode" },
1689  { "cubic", "use values from the cubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, INT_MIN, INT_MAX, FLAGS, "interp_mode" },
1690  { "spline", "use values from the spline interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE}, INT_MIN, INT_MAX, FLAGS, "interp_mode" },
1691  { NULL }
1692 };
1693 
1694 AVFILTER_DEFINE_CLASS(lut1d);
1695 
1696 static inline float interp_1d_nearest(const LUT1DContext *lut1d,
1697  int idx, const float s)
1698 {
1699  return lut1d->lut[idx][NEAR(s)];
1700 }
1701 
1702 #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1))
1703 
1704 static inline float interp_1d_linear(const LUT1DContext *lut1d,
1705  int idx, const float s)
1706 {
1707  const int prev = PREV(s);
1708  const int next = NEXT1D(s);
1709  const float d = s - prev;
1710  const float p = lut1d->lut[idx][prev];
1711  const float n = lut1d->lut[idx][next];
1712 
1713  return lerpf(p, n, d);
1714 }
1715 
1716 static inline float interp_1d_cosine(const LUT1DContext *lut1d,
1717  int idx, const float s)
1718 {
1719  const int prev = PREV(s);
1720  const int next = NEXT1D(s);
1721  const float d = s - prev;
1722  const float p = lut1d->lut[idx][prev];
1723  const float n = lut1d->lut[idx][next];
1724  const float m = (1.f - cosf(d * M_PI)) * .5f;
1725 
1726  return lerpf(p, n, m);
1727 }
1728 
1729 static inline float interp_1d_cubic(const LUT1DContext *lut1d,
1730  int idx, const float s)
1731 {
1732  const int prev = PREV(s);
1733  const int next = NEXT1D(s);
1734  const float mu = s - prev;
1735  float a0, a1, a2, a3, mu2;
1736 
1737  float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
1738  float y1 = lut1d->lut[idx][prev];
1739  float y2 = lut1d->lut[idx][next];
1740  float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
1741 
1742 
1743  mu2 = mu * mu;
1744  a0 = y3 - y2 - y0 + y1;
1745  a1 = y0 - y1 - a0;
1746  a2 = y2 - y0;
1747  a3 = y1;
1748 
1749  return a0 * mu * mu2 + a1 * mu2 + a2 * mu + a3;
1750 }
1751 
1752 static inline float interp_1d_spline(const LUT1DContext *lut1d,
1753  int idx, const float s)
1754 {
1755  const int prev = PREV(s);
1756  const int next = NEXT1D(s);
1757  const float x = s - prev;
1758  float c0, c1, c2, c3;
1759 
1760  float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
1761  float y1 = lut1d->lut[idx][prev];
1762  float y2 = lut1d->lut[idx][next];
1763  float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
1764 
1765  c0 = y1;
1766  c1 = .5f * (y2 - y0);
1767  c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3;
1768  c3 = .5f * (y3 - y0) + 1.5f * (y1 - y2);
1769 
1770  return ((c3 * x + c2) * x + c1) * x + c0;
1771 }
1772 
1773 #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \
1774 static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \
1775  void *arg, int jobnr, \
1776  int nb_jobs) \
1777 { \
1778  int x, y; \
1779  const LUT1DContext *lut1d = ctx->priv; \
1780  const ThreadData *td = arg; \
1781  const AVFrame *in = td->in; \
1782  const AVFrame *out = td->out; \
1783  const int direct = out == in; \
1784  const int slice_start = (in->height * jobnr ) / nb_jobs; \
1785  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1786  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1787  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1788  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1789  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1790  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1791  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1792  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1793  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1794  const float factor = (1 << depth) - 1; \
1795  const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
1796  const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
1797  const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
1798  \
1799  for (y = slice_start; y < slice_end; y++) { \
1800  uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
1801  uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
1802  uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
1803  uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
1804  const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
1805  const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
1806  const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
1807  const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
1808  for (x = 0; x < in->width; x++) { \
1809  float r = srcr[x] * scale_r; \
1810  float g = srcg[x] * scale_g; \
1811  float b = srcb[x] * scale_b; \
1812  r = interp_1d_##name(lut1d, 0, r); \
1813  g = interp_1d_##name(lut1d, 1, g); \
1814  b = interp_1d_##name(lut1d, 2, b); \
1815  dstr[x] = av_clip_uintp2(r * factor, depth); \
1816  dstg[x] = av_clip_uintp2(g * factor, depth); \
1817  dstb[x] = av_clip_uintp2(b * factor, depth); \
1818  if (!direct && in->linesize[3]) \
1819  dsta[x] = srca[x]; \
1820  } \
1821  grow += out->linesize[0]; \
1822  brow += out->linesize[1]; \
1823  rrow += out->linesize[2]; \
1824  arow += out->linesize[3]; \
1825  srcgrow += in->linesize[0]; \
1826  srcbrow += in->linesize[1]; \
1827  srcrrow += in->linesize[2]; \
1828  srcarow += in->linesize[3]; \
1829  } \
1830  return 0; \
1831 }
1832 
1833 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8)
1834 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 8, 8)
1835 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 8, 8)
1836 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8)
1837 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 8, 8)
1838 
1839 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9)
1840 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 9)
1841 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 9)
1842 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9)
1843 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 9)
1844 
1845 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10)
1846 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 10)
1847 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 10)
1848 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10)
1849 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 10)
1850 
1851 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12)
1852 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 12)
1853 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 12)
1854 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12)
1855 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 12)
1856 
1857 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14)
1858 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 14)
1859 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 14)
1860 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14)
1861 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 14)
1862 
1863 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16)
1864 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 16)
1865 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 16)
1866 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16)
1867 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 16)
1868 
1869 #define DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(name, depth) \
1870 static int interp_1d_##name##_pf##depth(AVFilterContext *ctx, \
1871  void *arg, int jobnr, \
1872  int nb_jobs) \
1873 { \
1874  int x, y; \
1875  const LUT1DContext *lut1d = ctx->priv; \
1876  const ThreadData *td = arg; \
1877  const AVFrame *in = td->in; \
1878  const AVFrame *out = td->out; \
1879  const int direct = out == in; \
1880  const int slice_start = (in->height * jobnr ) / nb_jobs; \
1881  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1882  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1883  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1884  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1885  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1886  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1887  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1888  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1889  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1890  const float lutsize = lut1d->lutsize - 1; \
1891  const float scale_r = lut1d->scale.r * lutsize; \
1892  const float scale_g = lut1d->scale.g * lutsize; \
1893  const float scale_b = lut1d->scale.b * lutsize; \
1894  \
1895  for (y = slice_start; y < slice_end; y++) { \
1896  float *dstg = (float *)grow; \
1897  float *dstb = (float *)brow; \
1898  float *dstr = (float *)rrow; \
1899  float *dsta = (float *)arow; \
1900  const float *srcg = (const float *)srcgrow; \
1901  const float *srcb = (const float *)srcbrow; \
1902  const float *srcr = (const float *)srcrrow; \
1903  const float *srca = (const float *)srcarow; \
1904  for (x = 0; x < in->width; x++) { \
1905  float r = av_clipf(sanitizef(srcr[x]) * scale_r, 0.0f, lutsize); \
1906  float g = av_clipf(sanitizef(srcg[x]) * scale_g, 0.0f, lutsize); \
1907  float b = av_clipf(sanitizef(srcb[x]) * scale_b, 0.0f, lutsize); \
1908  r = interp_1d_##name(lut1d, 0, r); \
1909  g = interp_1d_##name(lut1d, 1, g); \
1910  b = interp_1d_##name(lut1d, 2, b); \
1911  dstr[x] = r; \
1912  dstg[x] = g; \
1913  dstb[x] = b; \
1914  if (!direct && in->linesize[3]) \
1915  dsta[x] = srca[x]; \
1916  } \
1917  grow += out->linesize[0]; \
1918  brow += out->linesize[1]; \
1919  rrow += out->linesize[2]; \
1920  arow += out->linesize[3]; \
1921  srcgrow += in->linesize[0]; \
1922  srcbrow += in->linesize[1]; \
1923  srcrrow += in->linesize[2]; \
1924  srcarow += in->linesize[3]; \
1925  } \
1926  return 0; \
1927 }
1928 
1929 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(nearest, 32)
1930 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(linear, 32)
1931 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cosine, 32)
1932 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cubic, 32)
1933 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(spline, 32)
1934 
1935 #define DEFINE_INTERP_FUNC_1D(name, nbits) \
1936 static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \
1937  int jobnr, int nb_jobs) \
1938 { \
1939  int x, y; \
1940  const LUT1DContext *lut1d = ctx->priv; \
1941  const ThreadData *td = arg; \
1942  const AVFrame *in = td->in; \
1943  const AVFrame *out = td->out; \
1944  const int direct = out == in; \
1945  const int step = lut1d->step; \
1946  const uint8_t r = lut1d->rgba_map[R]; \
1947  const uint8_t g = lut1d->rgba_map[G]; \
1948  const uint8_t b = lut1d->rgba_map[B]; \
1949  const uint8_t a = lut1d->rgba_map[A]; \
1950  const int slice_start = (in->height * jobnr ) / nb_jobs; \
1951  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1952  uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
1953  const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
1954  const float factor = (1 << nbits) - 1; \
1955  const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
1956  const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
1957  const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
1958  \
1959  for (y = slice_start; y < slice_end; y++) { \
1960  uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
1961  const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
1962  for (x = 0; x < in->width * step; x += step) { \
1963  float rr = src[x + r] * scale_r; \
1964  float gg = src[x + g] * scale_g; \
1965  float bb = src[x + b] * scale_b; \
1966  rr = interp_1d_##name(lut1d, 0, rr); \
1967  gg = interp_1d_##name(lut1d, 1, gg); \
1968  bb = interp_1d_##name(lut1d, 2, bb); \
1969  dst[x + r] = av_clip_uint##nbits(rr * factor); \
1970  dst[x + g] = av_clip_uint##nbits(gg * factor); \
1971  dst[x + b] = av_clip_uint##nbits(bb * factor); \
1972  if (!direct && step == 4) \
1973  dst[x + a] = src[x + a]; \
1974  } \
1975  dstrow += out->linesize[0]; \
1976  srcrow += in ->linesize[0]; \
1977  } \
1978  return 0; \
1979 }
1980 
1981 DEFINE_INTERP_FUNC_1D(nearest, 8)
1982 DEFINE_INTERP_FUNC_1D(linear, 8)
1983 DEFINE_INTERP_FUNC_1D(cosine, 8)
1984 DEFINE_INTERP_FUNC_1D(cubic, 8)
1985 DEFINE_INTERP_FUNC_1D(spline, 8)
1986 
1987 DEFINE_INTERP_FUNC_1D(nearest, 16)
1988 DEFINE_INTERP_FUNC_1D(linear, 16)
1989 DEFINE_INTERP_FUNC_1D(cosine, 16)
1990 DEFINE_INTERP_FUNC_1D(cubic, 16)
1991 DEFINE_INTERP_FUNC_1D(spline, 16)
1992 
1993 static int config_input_1d(AVFilterLink *inlink)
1994 {
1995  int depth, is16bit, isfloat, planar;
1996  LUT1DContext *lut1d = inlink->dst->priv;
1998 
1999  depth = desc->comp[0].depth;
2000  is16bit = desc->comp[0].depth > 8;
2001  planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
2002  isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
2003  ff_fill_rgba_map(lut1d->rgba_map, inlink->format);
2004  lut1d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
2005 
2006 #define SET_FUNC_1D(name) do { \
2007  if (planar && !isfloat) { \
2008  switch (depth) { \
2009  case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \
2010  case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \
2011  case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \
2012  case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \
2013  case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \
2014  case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \
2015  } \
2016  } else if (isfloat) { lut1d->interp = interp_1d_##name##_pf32; \
2017  } else if (is16bit) { lut1d->interp = interp_1d_16_##name; \
2018  } else { lut1d->interp = interp_1d_8_##name; } \
2019 } while (0)
2020 
2021  switch (lut1d->interpolation) {
2022  case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest); break;
2023  case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(linear); break;
2024  case INTERPOLATE_1D_COSINE: SET_FUNC_1D(cosine); break;
2025  case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic); break;
2026  case INTERPOLATE_1D_SPLINE: SET_FUNC_1D(spline); break;
2027  default:
2028  av_assert0(0);
2029  }
2030 
2031  return 0;
2032 }
2033 
2034 static av_cold int lut1d_init(AVFilterContext *ctx)
2035 {
2036  int ret;
2037  FILE *f;
2038  const char *ext;
2039  LUT1DContext *lut1d = ctx->priv;
2040 
2041  lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f;
2042 
2043  if (!lut1d->file) {
2044  set_identity_matrix_1d(lut1d, 32);
2045  return 0;
2046  }
2047 
2048  f = av_fopen_utf8(lut1d->file, "r");
2049  if (!f) {
2050  ret = AVERROR(errno);
2051  av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut1d->file, av_err2str(ret));
2052  return ret;
2053  }
2054 
2055  ext = strrchr(lut1d->file, '.');
2056  if (!ext) {
2057  av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
2058  ret = AVERROR_INVALIDDATA;
2059  goto end;
2060  }
2061  ext++;
2062 
2063  if (!av_strcasecmp(ext, "cube") || !av_strcasecmp(ext, "1dlut")) {
2064  ret = parse_cube_1d(ctx, f);
2065  } else if (!av_strcasecmp(ext, "csp")) {
2066  ret = parse_cinespace_1d(ctx, f);
2067  } else {
2068  av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
2069  ret = AVERROR(EINVAL);
2070  }
2071 
2072  if (!ret && !lut1d->lutsize) {
2073  av_log(ctx, AV_LOG_ERROR, "1D LUT is empty\n");
2074  ret = AVERROR_INVALIDDATA;
2075  }
2076 
2077 end:
2078  fclose(f);
2079  return ret;
2080 }
2081 
2082 static AVFrame *apply_1d_lut(AVFilterLink *inlink, AVFrame *in)
2083 {
2084  AVFilterContext *ctx = inlink->dst;
2085  LUT1DContext *lut1d = ctx->priv;
2086  AVFilterLink *outlink = inlink->dst->outputs[0];
2087  AVFrame *out;
2088  ThreadData td;
2089 
2090  if (av_frame_is_writable(in)) {
2091  out = in;
2092  } else {
2093  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
2094  if (!out) {
2095  av_frame_free(&in);
2096  return NULL;
2097  }
2098  av_frame_copy_props(out, in);
2099  }
2100 
2101  td.in = in;
2102  td.out = out;
2103  ctx->internal->execute(ctx, lut1d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
2104 
2105  if (out != in)
2106  av_frame_free(&in);
2107 
2108  return out;
2109 }
2110 
2111 static int filter_frame_1d(AVFilterLink *inlink, AVFrame *in)
2112 {
2113  AVFilterLink *outlink = inlink->dst->outputs[0];
2114  AVFrame *out = apply_1d_lut(inlink, in);
2115  if (!out)
2116  return AVERROR(ENOMEM);
2117  return ff_filter_frame(outlink, out);
2118 }
2119 
2120 static const AVFilterPad lut1d_inputs[] = {
2121  {
2122  .name = "default",
2123  .type = AVMEDIA_TYPE_VIDEO,
2124  .filter_frame = filter_frame_1d,
2125  .config_props = config_input_1d,
2126  },
2127  { NULL }
2128 };
2129 
2130 static const AVFilterPad lut1d_outputs[] = {
2131  {
2132  .name = "default",
2133  .type = AVMEDIA_TYPE_VIDEO,
2134  },
2135  { NULL }
2136 };
2137 
2139  .name = "lut1d",
2140  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 1D LUT."),
2141  .priv_size = sizeof(LUT1DContext),
2142  .init = lut1d_init,
2144  .inputs = lut1d_inputs,
2145  .outputs = lut1d_outputs,
2146  .priv_class = &lut1d_class,
2148 };
2149 #endif
static float prelut_interp_1d_linear(const Lut3DPreLut *prelut, int idx, const float s)
Definition: vf_lut3d.c:247
#define NULL
Definition: coverity.c:32
#define FRAMESYNC_DEFINE_CLASS(name, context, field)
Definition: framesync.h:300
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
AVFrame * out
Definition: af_adeclick.c:494
#define COMMON_OPTIONS
Definition: vf_lut3d.c:101
static int config_input(AVFilterLink *inlink)
Definition: vf_lut3d.c:1059
int size
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2549
This structure describes decoded (raw) audio or video data.
Definition: frame.h:300
#define PRELUT_SIZE
Definition: vf_lut3d.c:62
AVOption.
Definition: opt.h:246
static struct rgbvec interp_trilinear(const LUT3DContext *lut3d, const struct rgbvec *s)
Interpolate using the 8 vertices of a cube.
Definition: vf_lut3d.c:162
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:417
static int linear(InterplayACMContext *s, unsigned ind, unsigned col)
Definition: interplayacm.c:121
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2589
Main libavfilter public API header.
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
const char * desc
Definition: nvenc.c:79
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:387
#define a0
Definition: regdef.h:46
FILE * av_fopen_utf8(const char *path, const char *mode)
Open a file using a UTF-8 filename.
Definition: file_open.c:158
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
static int skip_line(const char *p)
Definition: vf_lut3d.c:485
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:413
static av_const int av_isspace(int c)
Locale-independent conversion of ASCII isspace.
Definition: avstring.h:222
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:392
#define a1
Definition: regdef.h:47
static int parse_cube(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:611
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
Definition: framesync.c:117
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:239
const char * master
Definition: vf_curves.c:117
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:104
#define NEXT_LINE_OR_GOTO(loop_cond, label)
Definition: vf_lut3d.c:533
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:300
float min[3]
Definition: vf_lut3d.c:66
static int set_identity_matrix(AVFilterContext *ctx, int size)
Definition: vf_lut3d.c:1009
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
Definition: avfilter.h:125
const char * name
Pad name.
Definition: internal.h:60
AVFilterContext * parent
Parent filter context.
Definition: framesync.h:152
AVFilterLink ** inputs
array of pointers to input links
Definition: avfilter.h:346
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
#define MAX_LEVEL
Definition: vf_lut3d.c:61
AVFilter ff_vf_haldclut
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1075
#define a3
Definition: regdef.h:49
static float lerpf(float v0, float v1, float f)
Definition: vf_lut3d.c:132
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
AVFilter ff_vf_lut1d
uint8_t
#define av_cold
Definition: attributes.h:88
#define av_malloc(s)
static av_cold int uninit(AVCodecContext *avctx)
Definition: crystalhd.c:279
#define fs(width, name, subs,...)
Definition: cbs_vp9.c:259
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:238
AVOptions.
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
Definition: framesync.c:351
#define f(width, name)
Definition: cbs_vp9.c:255
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
Definition: pixdesc.h:188
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:92
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
Definition: framesync.c:369
#define cosf(x)
Definition: libm.h:78
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:412
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
static AVFrame * frame
Misc file utilities.
#define NEAR(x)
Definition: vf_lut3d.c:145
const char data[16]
Definition: mxf.c:91
#define OFFSET(x)
Definition: vf_lut3d.c:99
static const uint64_t c1
Definition: murmur3.c:49
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:388
struct rgbvec scale
Definition: vf_lut3d.c:79
#define max(a, b)
Definition: cuda_runtime.h:33
static int parse_cinespace(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:810
float max[3]
Definition: vf_lut3d.c:67
#define av_log(a,...)
static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut)
Definition: vf_lut3d.c:541
A filter pad used for either input or output.
Definition: internal.h:54
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ff_set_common_formats(AVFilterContext *ctx, AVFilterFormats *formats)
A helper for query_formats() which sets all links to the same list of formats.
Definition: formats.c:605
#define td
Definition: regdef.h:70
uint8_t rgba_map[4]
Definition: vf_lut3d.c:76
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
Definition: framesync.c:283
interp_mode
Definition: vf_lut3d.c:48
#define DEFINE_INTERP_FUNC(name, nbits)
Definition: vf_lut3d.c:426
Frame sync structure.
Definition: framesync.h:146
struct rgbvec * lut
Definition: vf_lut3d.c:80
#define AVERROR(e)
Definition: error.h:43
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
#define NEXT(x)
Definition: vf_lut3d.c:147
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:188
#define MAX_LINE_SIZE
Definition: vf_lut3d.c:483
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
void * priv
private data for use by the filter
Definition: avfilter.h:353
int av_get_padded_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel for the pixel format described by pixdesc, including any padding ...
Definition: pixdesc.c:2514
static struct rgbvec interp_nearest(const LUT3DContext *lut3d, const struct rgbvec *s)
Get the nearest defined point.
Definition: vf_lut3d.c:152
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:116
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
static int config_output(AVFilterLink *outlink)
Definition: af_aecho.c:234
Definition: graph2dot.c:48
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:418
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:383
simple assert() macros that are a bit more flexible than ISO C assert().
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter&#39;s input and try to produce output.
Definition: framesync.c:334
#define FLAGS
Definition: vf_lut3d.c:100
#define FFMAX(a, b)
Definition: common.h:94
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
#define AV_PIX_FMT_GBRAP16
Definition: pixfmt.h:419
int av_sscanf(const char *string, const char *format,...)
See libc sscanf manual for more information.
Definition: avsscanf.c:962
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
#define NEXT_FLOAT_OR_GOTO(value, label)
Definition: vf_lut3d.c:800
#define SET_COLOR(id)
#define EXPONENT_MASK
Definition: vf_lut3d.c:108
uint64_t flags
Combination of AV_PIX_FMT_FLAG_...
Definition: pixdesc.h:106
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:416
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Definition: avfilter.c:784
int lutsize2
Definition: vf_lut3d.c:82
#define FFMIN(a, b)
Definition: common.h:96
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
Definition: avstring.c:213
uint8_t w
Definition: llviddspenc.c:38
int() avfilter_action_func(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
A function pointer passed to the AVFilterGraph::execute callback to be executed multiple times...
Definition: avfilter.h:823
static int interpolation(DeclickChannel *c, const double *src, int ar_order, double *acoefficients, int *index, int nb_errors, double *auxiliary, double *interpolated)
Definition: af_adeclick.c:357
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
Definition: error.h:119
AVFormatContext * ctx
Definition: movenc.c:48
#define a2
Definition: regdef.h:48
#define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth)
Definition: vf_lut3d.c:275
static int activate(AVFilterContext *ctx)
Definition: af_adeclick.c:622
int lutsize
Definition: vf_lut3d.c:81
#define s(width, name)
Definition: cbs_vp9.c:257
uint32_t i
Definition: intfloat.h:28
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
static const AVFilterPad inputs[]
Definition: af_acontrast.c:193
#define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth)
Definition: vf_lut3d.c:361
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:415
static AVFrame * apply_lut(AVFilterLink *inlink, AVFrame *in)
Definition: vf_lut3d.c:1098
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
Definition: drawutils.c:35
#define PREV(x)
Definition: vf_lut3d.c:146
#define MANTISSA_MASK
Definition: vf_lut3d.c:109
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
static int mix(int c0, int c1)
Definition: 4xm.c:714
char * file
Definition: vf_lut3d.c:75
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
misc drawing utilities
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
Definition: frame.c:595
Used for passing data between threads.
Definition: dsddec.c:67
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:331
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
float b
Definition: vf_lut3d.c:56
static struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
Definition: vf_lut3d.c:137
int interpolation
interp_mode
Definition: vf_lut3d.c:74
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
Describe the class of an AVClass context structure.
Definition: log.h:67
Filter definition.
Definition: avfilter.h:144
AVFilter ff_vf_lut3d
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:240
const char * name
Filter name.
Definition: avfilter.h:148
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
Definition: avfilter.h:133
static struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, const struct rgbvec *s)
Tetrahedral interpolation.
Definition: vf_lut3d.c:192
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:350
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:275
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:414
#define flags(name, subs,...)
Definition: cbs_av1.c:565
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
Definition: avfilter.h:378
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:314
uint8_t level
Definition: svq3.c:210
#define v0
Definition: regdef.h:26
#define AV_PIX_FMT_GBRPF32
Definition: pixfmt.h:426
#define SIGN_MASK
Definition: vf_lut3d.c:110
#define AV_PIX_FMT_GBRAPF32
Definition: pixfmt.h:427
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
static double c[64]
Lut3DPreLut prelut
Definition: vf_lut3d.c:83
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
Definition: audioconvert.c:56
float * lut[3]
Definition: vf_lut3d.c:69
#define NEXT_LINE(loop_cond)
Definition: vf_lut3d.c:526
static int parse_m3d(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:703
static const uint64_t c2
Definition: murmur3.c:50
static int parse_3dl(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:668
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
Definition: vf_lut3d.c:1127
avfilter_execute_func * execute
Definition: internal.h:144
static struct rgbvec apply_prelut(const Lut3DPreLut *prelut, const struct rgbvec *s)
Definition: vf_lut3d.c:261
static int parse_dat(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:576
float r
Definition: vf_lut3d.c:56
#define AVFILTER_DEFINE_CLASS(fname)
Definition: internal.h:314
float scale[3]
Definition: vf_lut3d.c:68
A list of supported formats for one end of a filter link.
Definition: formats.h:64
An instance of a filter.
Definition: avfilter.h:338
FILE * out
Definition: movenc.c:54
#define av_freep(p)
#define M_PI
Definition: mathematics.h:52
#define av_malloc_array(a, b)
static int query_formats(AVFilterContext *ctx)
Definition: vf_lut3d.c:1034
AVFrame * in
Definition: af_afftdn.c:1083
float g
Definition: vf_lut3d.c:56
internal API functions
int depth
Number of bits in the component.
Definition: pixdesc.h:58
#define SET_FUNC(name)
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:237
float min
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
static double val(void *priv, double ch)
Definition: aeval.c:76
static char * fget_next_word(char *dst, int max, FILE *f)
Definition: vf_lut3d.c:492
int size
Definition: vf_lut3d.c:65
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
Definition: pixdesc.h:144
static int nearest_sample_index(float *data, float x, int low, int hi)
Definition: vf_lut3d.c:772
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:659
static float sanitizef(float f)
Definition: vf_lut3d.c:112
avfilter_action_func * interp
Definition: vf_lut3d.c:78