FFmpeg  4.3.6
fft_template.c
Go to the documentation of this file.
1 /*
2  * FFT/IFFT transforms
3  * Copyright (c) 2008 Loren Merritt
4  * Copyright (c) 2002 Fabrice Bellard
5  * Partly based on libdjbfft by D. J. Bernstein
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * FFT/IFFT transforms.
27  */
28 
29 #include <stdlib.h>
30 #include <string.h>
31 #include "libavutil/mathematics.h"
32 #include "libavutil/thread.h"
33 #include "fft.h"
34 #include "fft-internal.h"
35 
36 #if FFT_FIXED_32
37 #include "fft_table.h"
38 #else /* FFT_FIXED_32 */
39 
40 /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
41 #if !CONFIG_HARDCODED_TABLES
42 COSTABLE(16);
43 COSTABLE(32);
44 COSTABLE(64);
45 COSTABLE(128);
46 COSTABLE(256);
47 COSTABLE(512);
48 COSTABLE(1024);
49 COSTABLE(2048);
50 COSTABLE(4096);
51 COSTABLE(8192);
52 COSTABLE(16384);
53 COSTABLE(32768);
54 COSTABLE(65536);
55 COSTABLE(131072);
56 
57 static av_cold void init_ff_cos_tabs(int index)
58 {
59  int i;
60  int m = 1<<index;
61  double freq = 2*M_PI/m;
62  FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
63  for(i=0; i<=m/4; i++)
64  tab[i] = FIX15(cos(i*freq));
65  for(i=1; i<m/4; i++)
66  tab[m/2-i] = tab[i];
67 }
68 
69 typedef struct CosTabsInitOnce {
70  void (*func)(void);
73 
74 #define INIT_FF_COS_TABS_FUNC(index, size) \
75 static av_cold void init_ff_cos_tabs_ ## size (void)\
76 { \
77  init_ff_cos_tabs(index); \
78 }
79 
86 INIT_FF_COS_TABS_FUNC(10, 1024)
87 INIT_FF_COS_TABS_FUNC(11, 2048)
88 INIT_FF_COS_TABS_FUNC(12, 4096)
89 INIT_FF_COS_TABS_FUNC(13, 8192)
90 INIT_FF_COS_TABS_FUNC(14, 16384)
91 INIT_FF_COS_TABS_FUNC(15, 32768)
92 INIT_FF_COS_TABS_FUNC(16, 65536)
93 INIT_FF_COS_TABS_FUNC(17, 131072)
94 
96  { NULL },
97  { NULL },
98  { NULL },
99  { NULL },
100  { init_ff_cos_tabs_16, AV_ONCE_INIT },
101  { init_ff_cos_tabs_32, AV_ONCE_INIT },
102  { init_ff_cos_tabs_64, AV_ONCE_INIT },
103  { init_ff_cos_tabs_128, AV_ONCE_INIT },
104  { init_ff_cos_tabs_256, AV_ONCE_INIT },
105  { init_ff_cos_tabs_512, AV_ONCE_INIT },
106  { init_ff_cos_tabs_1024, AV_ONCE_INIT },
107  { init_ff_cos_tabs_2048, AV_ONCE_INIT },
108  { init_ff_cos_tabs_4096, AV_ONCE_INIT },
109  { init_ff_cos_tabs_8192, AV_ONCE_INIT },
110  { init_ff_cos_tabs_16384, AV_ONCE_INIT },
111  { init_ff_cos_tabs_32768, AV_ONCE_INIT },
112  { init_ff_cos_tabs_65536, AV_ONCE_INIT },
113  { init_ff_cos_tabs_131072, AV_ONCE_INIT },
114 };
115 
116 #endif
117 COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
118  NULL, NULL, NULL, NULL,
119  FFT_NAME(ff_cos_16),
120  FFT_NAME(ff_cos_32),
121  FFT_NAME(ff_cos_64),
122  FFT_NAME(ff_cos_128),
123  FFT_NAME(ff_cos_256),
124  FFT_NAME(ff_cos_512),
125  FFT_NAME(ff_cos_1024),
126  FFT_NAME(ff_cos_2048),
127  FFT_NAME(ff_cos_4096),
128  FFT_NAME(ff_cos_8192),
129  FFT_NAME(ff_cos_16384),
130  FFT_NAME(ff_cos_32768),
131  FFT_NAME(ff_cos_65536),
132  FFT_NAME(ff_cos_131072),
133 };
134 
135 #endif /* FFT_FIXED_32 */
136 
137 static void fft_permute_c(FFTContext *s, FFTComplex *z);
138 static void fft_calc_c(FFTContext *s, FFTComplex *z);
139 
140 static int split_radix_permutation(int i, int n, int inverse)
141 {
142  int m;
143  if(n <= 2) return i&1;
144  m = n >> 1;
145  if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
146  m >>= 1;
147  if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
148  else return split_radix_permutation(i, m, inverse)*4 - 1;
149 }
150 
152 {
153 #if (!CONFIG_HARDCODED_TABLES) && (!FFT_FIXED_32)
155 #endif
156 }
157 
158 static const int avx_tab[] = {
159  0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
160 };
161 
162 static int is_second_half_of_fft32(int i, int n)
163 {
164  if (n <= 32)
165  return i >= 16;
166  else if (i < n/2)
167  return is_second_half_of_fft32(i, n/2);
168  else if (i < 3*n/4)
169  return is_second_half_of_fft32(i - n/2, n/4);
170  else
171  return is_second_half_of_fft32(i - 3*n/4, n/4);
172 }
173 
175 {
176  int i;
177  int n = 1 << s->nbits;
178 
179  for (i = 0; i < n; i += 16) {
180  int k;
181  if (is_second_half_of_fft32(i, n)) {
182  for (k = 0; k < 16; k++)
183  s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] =
184  i + avx_tab[k];
185 
186  } else {
187  for (k = 0; k < 16; k++) {
188  int j = i + k;
189  j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
190  s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j;
191  }
192  }
193  }
194 }
195 
196 av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
197 {
198  int i, j, n;
199 
200  s->revtab = NULL;
201  s->revtab32 = NULL;
202 
203  if (nbits < 2 || nbits > 17)
204  goto fail;
205  s->nbits = nbits;
206  n = 1 << nbits;
207 
208  if (nbits <= 16) {
209  s->revtab = av_malloc(n * sizeof(uint16_t));
210  if (!s->revtab)
211  goto fail;
212  } else {
213  s->revtab32 = av_malloc(n * sizeof(uint32_t));
214  if (!s->revtab32)
215  goto fail;
216  }
217  s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
218  if (!s->tmp_buf)
219  goto fail;
220  s->inverse = inverse;
222 
224  s->fft_calc = fft_calc_c;
225 #if CONFIG_MDCT
229 #endif
230 
231 #if FFT_FIXED_32
232  ff_fft_lut_init();
233 #else /* FFT_FIXED_32 */
234 #if FFT_FLOAT
236  if (ARCH_ARM) ff_fft_init_arm(s);
237  if (ARCH_PPC) ff_fft_init_ppc(s);
238  if (ARCH_X86) ff_fft_init_x86(s);
239  if (CONFIG_MDCT) s->mdct_calcw = s->mdct_calc;
241 #else
244 #endif
245  for(j=4; j<=nbits; j++) {
247  }
248 #endif /* FFT_FIXED_32 */
249 
250 
251  if (s->fft_permutation == FF_FFT_PERM_AVX) {
252  fft_perm_avx(s);
253  } else {
254 #define PROCESS_FFT_PERM_SWAP_LSBS(num) do {\
255  for(i = 0; i < n; i++) {\
256  int k;\
257  j = i;\
258  j = (j & ~3) | ((j >> 1) & 1) | ((j << 1) & 2);\
259  k = -split_radix_permutation(i, n, s->inverse) & (n - 1);\
260  s->revtab##num[k] = j;\
261  } \
262 } while(0);
263 
264 #define PROCESS_FFT_PERM_DEFAULT(num) do {\
265  for(i = 0; i < n; i++) {\
266  int k;\
267  j = i;\
268  k = -split_radix_permutation(i, n, s->inverse) & (n - 1);\
269  s->revtab##num[k] = j;\
270  } \
271 } while(0);
272 
273 #define SPLIT_RADIX_PERMUTATION(num) do { \
274  if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS) {\
275  PROCESS_FFT_PERM_SWAP_LSBS(num) \
276  } else {\
277  PROCESS_FFT_PERM_DEFAULT(num) \
278  }\
279 } while(0);
280 
281  if (s->revtab)
283  if (s->revtab32)
285 
286 #undef PROCESS_FFT_PERM_DEFAULT
287 #undef PROCESS_FFT_PERM_SWAP_LSBS
288 #undef SPLIT_RADIX_PERMUTATION
289  }
290 
291  return 0;
292  fail:
293  av_freep(&s->revtab);
294  av_freep(&s->revtab32);
295  av_freep(&s->tmp_buf);
296  return -1;
297 }
298 
300 {
301  int j, np;
302  const uint16_t *revtab = s->revtab;
303  const uint32_t *revtab32 = s->revtab32;
304  np = 1 << s->nbits;
305  /* TODO: handle split-radix permute in a more optimal way, probably in-place */
306  if (revtab) {
307  for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
308  } else
309  for(j=0;j<np;j++) s->tmp_buf[revtab32[j]] = z[j];
310 
311  memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
312 }
313 
315 {
316  av_freep(&s->revtab);
317  av_freep(&s->revtab32);
318  av_freep(&s->tmp_buf);
319 }
320 
321 #if FFT_FIXED_32
322 
323 static void fft_calc_c(FFTContext *s, FFTComplex *z) {
324 
325  int nbits, i, n, num_transforms, offset, step;
326  int n4, n2, n34;
327  unsigned tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
328  FFTComplex *tmpz;
329  const int fft_size = (1 << s->nbits);
330  int64_t accu;
331 
332  num_transforms = (0x2aab >> (16 - s->nbits)) | 1;
333 
334  for (n=0; n<num_transforms; n++){
335  offset = ff_fft_offsets_lut[n] << 2;
336  tmpz = z + offset;
337 
338  tmp1 = tmpz[0].re + (unsigned)tmpz[1].re;
339  tmp5 = tmpz[2].re + (unsigned)tmpz[3].re;
340  tmp2 = tmpz[0].im + (unsigned)tmpz[1].im;
341  tmp6 = tmpz[2].im + (unsigned)tmpz[3].im;
342  tmp3 = tmpz[0].re - (unsigned)tmpz[1].re;
343  tmp8 = tmpz[2].im - (unsigned)tmpz[3].im;
344  tmp4 = tmpz[0].im - (unsigned)tmpz[1].im;
345  tmp7 = tmpz[2].re - (unsigned)tmpz[3].re;
346 
347  tmpz[0].re = tmp1 + tmp5;
348  tmpz[2].re = tmp1 - tmp5;
349  tmpz[0].im = tmp2 + tmp6;
350  tmpz[2].im = tmp2 - tmp6;
351  tmpz[1].re = tmp3 + tmp8;
352  tmpz[3].re = tmp3 - tmp8;
353  tmpz[1].im = tmp4 - tmp7;
354  tmpz[3].im = tmp4 + tmp7;
355  }
356 
357  if (fft_size < 8)
358  return;
359 
360  num_transforms = (num_transforms >> 1) | 1;
361 
362  for (n=0; n<num_transforms; n++){
363  offset = ff_fft_offsets_lut[n] << 3;
364  tmpz = z + offset;
365 
366  tmp1 = tmpz[4].re + (unsigned)tmpz[5].re;
367  tmp3 = tmpz[6].re + (unsigned)tmpz[7].re;
368  tmp2 = tmpz[4].im + (unsigned)tmpz[5].im;
369  tmp4 = tmpz[6].im + (unsigned)tmpz[7].im;
370  tmp5 = tmp1 + tmp3;
371  tmp7 = tmp1 - tmp3;
372  tmp6 = tmp2 + tmp4;
373  tmp8 = tmp2 - tmp4;
374 
375  tmp1 = tmpz[4].re - (unsigned)tmpz[5].re;
376  tmp2 = tmpz[4].im - (unsigned)tmpz[5].im;
377  tmp3 = tmpz[6].re - (unsigned)tmpz[7].re;
378  tmp4 = tmpz[6].im - (unsigned)tmpz[7].im;
379 
380  tmpz[4].re = tmpz[0].re - tmp5;
381  tmpz[0].re = tmpz[0].re + tmp5;
382  tmpz[4].im = tmpz[0].im - tmp6;
383  tmpz[0].im = tmpz[0].im + tmp6;
384  tmpz[6].re = tmpz[2].re - tmp8;
385  tmpz[2].re = tmpz[2].re + tmp8;
386  tmpz[6].im = tmpz[2].im + tmp7;
387  tmpz[2].im = tmpz[2].im - tmp7;
388 
389  accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp1 + tmp2);
390  tmp5 = (int32_t)((accu + 0x40000000) >> 31);
391  accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp3 - tmp4);
392  tmp7 = (int32_t)((accu + 0x40000000) >> 31);
393  accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp2 - tmp1);
394  tmp6 = (int32_t)((accu + 0x40000000) >> 31);
395  accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp3 + tmp4);
396  tmp8 = (int32_t)((accu + 0x40000000) >> 31);
397  tmp1 = tmp5 + tmp7;
398  tmp3 = tmp5 - tmp7;
399  tmp2 = tmp6 + tmp8;
400  tmp4 = tmp6 - tmp8;
401 
402  tmpz[5].re = tmpz[1].re - tmp1;
403  tmpz[1].re = tmpz[1].re + tmp1;
404  tmpz[5].im = tmpz[1].im - tmp2;
405  tmpz[1].im = tmpz[1].im + tmp2;
406  tmpz[7].re = tmpz[3].re - tmp4;
407  tmpz[3].re = tmpz[3].re + tmp4;
408  tmpz[7].im = tmpz[3].im + tmp3;
409  tmpz[3].im = tmpz[3].im - tmp3;
410  }
411 
412  step = 1 << ((MAX_LOG2_NFFT-4) - 4);
413  n4 = 4;
414 
415  for (nbits=4; nbits<=s->nbits; nbits++){
416  n2 = 2*n4;
417  n34 = 3*n4;
418  num_transforms = (num_transforms >> 1) | 1;
419 
420  for (n=0; n<num_transforms; n++){
421  const FFTSample *w_re_ptr = ff_w_tab_sr + step;
422  const FFTSample *w_im_ptr = ff_w_tab_sr + MAX_FFT_SIZE/(4*16) - step;
423  offset = ff_fft_offsets_lut[n] << nbits;
424  tmpz = z + offset;
425 
426  tmp5 = tmpz[ n2].re + (unsigned)tmpz[n34].re;
427  tmp1 = tmpz[ n2].re - (unsigned)tmpz[n34].re;
428  tmp6 = tmpz[ n2].im + (unsigned)tmpz[n34].im;
429  tmp2 = tmpz[ n2].im - (unsigned)tmpz[n34].im;
430 
431  tmpz[ n2].re = tmpz[ 0].re - tmp5;
432  tmpz[ 0].re = tmpz[ 0].re + tmp5;
433  tmpz[ n2].im = tmpz[ 0].im - tmp6;
434  tmpz[ 0].im = tmpz[ 0].im + tmp6;
435  tmpz[n34].re = tmpz[n4].re - tmp2;
436  tmpz[ n4].re = tmpz[n4].re + tmp2;
437  tmpz[n34].im = tmpz[n4].im + tmp1;
438  tmpz[ n4].im = tmpz[n4].im - tmp1;
439 
440  for (i=1; i<n4; i++){
441  FFTSample w_re = w_re_ptr[0];
442  FFTSample w_im = w_im_ptr[0];
443  accu = (int64_t)w_re*tmpz[ n2+i].re;
444  accu += (int64_t)w_im*tmpz[ n2+i].im;
445  tmp1 = (int32_t)((accu + 0x40000000) >> 31);
446  accu = (int64_t)w_re*tmpz[ n2+i].im;
447  accu -= (int64_t)w_im*tmpz[ n2+i].re;
448  tmp2 = (int32_t)((accu + 0x40000000) >> 31);
449  accu = (int64_t)w_re*tmpz[n34+i].re;
450  accu -= (int64_t)w_im*tmpz[n34+i].im;
451  tmp3 = (int32_t)((accu + 0x40000000) >> 31);
452  accu = (int64_t)w_re*tmpz[n34+i].im;
453  accu += (int64_t)w_im*tmpz[n34+i].re;
454  tmp4 = (int32_t)((accu + 0x40000000) >> 31);
455 
456  tmp5 = tmp1 + tmp3;
457  tmp1 = tmp1 - tmp3;
458  tmp6 = tmp2 + tmp4;
459  tmp2 = tmp2 - tmp4;
460 
461  tmpz[ n2+i].re = tmpz[ i].re - tmp5;
462  tmpz[ i].re = tmpz[ i].re + tmp5;
463  tmpz[ n2+i].im = tmpz[ i].im - tmp6;
464  tmpz[ i].im = tmpz[ i].im + tmp6;
465  tmpz[n34+i].re = tmpz[n4+i].re - tmp2;
466  tmpz[ n4+i].re = tmpz[n4+i].re + tmp2;
467  tmpz[n34+i].im = tmpz[n4+i].im + tmp1;
468  tmpz[ n4+i].im = tmpz[n4+i].im - tmp1;
469 
470  w_re_ptr += step;
471  w_im_ptr -= step;
472  }
473  }
474  step >>= 1;
475  n4 <<= 1;
476  }
477 }
478 
479 #else /* FFT_FIXED_32 */
480 
481 #define BUTTERFLIES(a0,a1,a2,a3) {\
482  BF(t3, t5, t5, t1);\
483  BF(a2.re, a0.re, a0.re, t5);\
484  BF(a3.im, a1.im, a1.im, t3);\
485  BF(t4, t6, t2, t6);\
486  BF(a3.re, a1.re, a1.re, t4);\
487  BF(a2.im, a0.im, a0.im, t6);\
488 }
489 
490 // force loading all the inputs before storing any.
491 // this is slightly slower for small data, but avoids store->load aliasing
492 // for addresses separated by large powers of 2.
493 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
494  FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
495  BF(t3, t5, t5, t1);\
496  BF(a2.re, a0.re, r0, t5);\
497  BF(a3.im, a1.im, i1, t3);\
498  BF(t4, t6, t2, t6);\
499  BF(a3.re, a1.re, r1, t4);\
500  BF(a2.im, a0.im, i0, t6);\
501 }
502 
503 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
504  CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
505  CMUL(t5, t6, a3.re, a3.im, wre, wim);\
506  BUTTERFLIES(a0,a1,a2,a3)\
507 }
508 
509 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
510  t1 = a2.re;\
511  t2 = a2.im;\
512  t5 = a3.re;\
513  t6 = a3.im;\
514  BUTTERFLIES(a0,a1,a2,a3)\
515 }
516 
517 /* z[0...8n-1], w[1...2n-1] */
518 #define PASS(name)\
519 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
520 {\
521  FFTDouble t1, t2, t3, t4, t5, t6;\
522  int o1 = 2*n;\
523  int o2 = 4*n;\
524  int o3 = 6*n;\
525  const FFTSample *wim = wre+o1;\
526  n--;\
527 \
528  TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
529  TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
530  do {\
531  z += 2;\
532  wre += 2;\
533  wim -= 2;\
534  TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
535  TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
536  } while(--n);\
537 }
538 
539 PASS(pass)
540 #if !CONFIG_SMALL
541 #undef BUTTERFLIES
542 #define BUTTERFLIES BUTTERFLIES_BIG
543 PASS(pass_big)
544 #endif
545 
546 #define DECL_FFT(n,n2,n4)\
547 static void fft##n(FFTComplex *z)\
548 {\
549  fft##n2(z);\
550  fft##n4(z+n4*2);\
551  fft##n4(z+n4*3);\
552  pass(z,FFT_NAME(ff_cos_##n),n4/2);\
553 }
554 
555 static void fft4(FFTComplex *z)
556 {
557  FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
558 
559  BF(t3, t1, z[0].re, z[1].re);
560  BF(t8, t6, z[3].re, z[2].re);
561  BF(z[2].re, z[0].re, t1, t6);
562  BF(t4, t2, z[0].im, z[1].im);
563  BF(t7, t5, z[2].im, z[3].im);
564  BF(z[3].im, z[1].im, t4, t8);
565  BF(z[3].re, z[1].re, t3, t7);
566  BF(z[2].im, z[0].im, t2, t5);
567 }
568 
569 static void fft8(FFTComplex *z)
570 {
571  FFTDouble t1, t2, t3, t4, t5, t6;
572 
573  fft4(z);
574 
575  BF(t1, z[5].re, z[4].re, -z[5].re);
576  BF(t2, z[5].im, z[4].im, -z[5].im);
577  BF(t5, z[7].re, z[6].re, -z[7].re);
578  BF(t6, z[7].im, z[6].im, -z[7].im);
579 
580  BUTTERFLIES(z[0],z[2],z[4],z[6]);
581  TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
582 }
583 
584 #if !CONFIG_SMALL
585 static void fft16(FFTComplex *z)
586 {
587  FFTDouble t1, t2, t3, t4, t5, t6;
588  FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
589  FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
590 
591  fft8(z);
592  fft4(z+8);
593  fft4(z+12);
594 
595  TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
596  TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
597  TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
598  TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
599 }
600 #else
601 DECL_FFT(16,8,4)
602 #endif
603 DECL_FFT(32,16,8)
604 DECL_FFT(64,32,16)
605 DECL_FFT(128,64,32)
606 DECL_FFT(256,128,64)
607 DECL_FFT(512,256,128)
608 #if !CONFIG_SMALL
609 #define pass pass_big
610 #endif
611 DECL_FFT(1024,512,256)
612 DECL_FFT(2048,1024,512)
613 DECL_FFT(4096,2048,1024)
614 DECL_FFT(8192,4096,2048)
615 DECL_FFT(16384,8192,4096)
616 DECL_FFT(32768,16384,8192)
617 DECL_FFT(65536,32768,16384)
618 DECL_FFT(131072,65536,32768)
619 
620 static void (* const fft_dispatch[])(FFTComplex*) = {
621  fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
622  fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
623 };
624 
625 static void fft_calc_c(FFTContext *s, FFTComplex *z)
626 {
627  fft_dispatch[s->nbits-2](z);
628 }
629 #endif /* FFT_FIXED_32 */
static void fft_permute_c(FFTContext *s, FFTComplex *z)
Definition: fft_template.c:299
#define NULL
Definition: coverity.c:32
#define MAX_FFT_SIZE
Definition: fft_table.h:60
#define BUTTERFLIES(a0, a1, a2, a3)
Definition: fft_template.c:542
float FFTDouble
Definition: fft.h:43
static CosTabsInitOnce cos_tabs_init_once[]
Definition: fft_template.c:95
void ff_fft_lut_init(void)
float re
Definition: fft.c:82
#define ARCH_PPC
Definition: config.h:29
#define M_SQRT1_2
Definition: mathematics.h:58
static const int avx_tab[]
Definition: fft_template.c:158
#define SPLIT_RADIX_PERMUTATION(num)
FFTSample re
Definition: avfft.h:38
#define t8
Definition: regdef.h:53
static int split_radix_permutation(int i, int n, int inverse)
Definition: fft_template.c:140
#define MAX_LOG2_NFFT
Specifies maximum allowed fft size.
Definition: fft_table.h:59
#define sqrthalf
Definition: fft-internal.h:64
#define t7
Definition: regdef.h:35
#define av_cold
Definition: attributes.h:88
#define av_malloc(s)
COSTABLE(16)
av_cold void ff_fft_init_arm(FFTContext *s)
Definition: fft_init_arm.c:38
void ff_fft_init_ppc(FFTContext *s)
Definition: fft_init.c:151
const int32_t ff_w_tab_sr[MAX_FFT_SIZE/(4 *16)]
#define DECL_FFT(n, n2, n4)
Definition: fft_template.c:546
#define AVOnce
Definition: thread.h:172
#define INIT_FF_COS_TABS_FUNC(index, size)
Definition: fft_template.c:74
static void(*const fft_dispatch[])(FFTComplex *)
Definition: fft_template.c:620
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define FIX15(a)
Definition: fft-internal.h:62
void(* fft_permute)(struct FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling fft_calc().
Definition: fft.h:101
#define ARCH_X86
Definition: config.h:38
void(* mdct_calcw)(struct FFTContext *s, FFTDouble *output, const FFTSample *input)
Definition: fft.h:110
#define t1
Definition: regdef.h:29
void(* mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:109
void(* imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:107
#define t3
Definition: regdef.h:31
static const uint8_t offset[127][2]
Definition: vf_spp.c:93
av_cold void ff_fft_fixed_init_arm(FFTContext *s)
float FFTSample
Definition: avfft.h:35
#define fail()
Definition: checkasm.h:123
static av_cold void fft_perm_avx(FFTContext *s)
Definition: fft_template.c:174
#define pass
Definition: fft_template.c:609
#define Q31(x)
Definition: aac_defines.h:96
Definition: fft.h:88
av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
Set up a complex FFT.
Definition: fft_template.c:196
uint32_t * revtab32
Definition: fft.h:113
#define ARCH_ARM
Definition: config.h:19
#define PASS(name)
Definition: fft_template.c:518
int nbits
Definition: fft.h:89
int inverse
Definition: fft.h:90
int32_t
#define s(width, name)
Definition: cbs_vp9.c:257
enum fft_permutation_type fft_permutation
Definition: fft.h:111
#define ff_imdct_half_c
Definition: fft-internal.h:87
#define ff_imdct_calc_c
Definition: fft-internal.h:86
void(* func)(void)
Definition: fft_template.c:70
static int is_second_half_of_fft32(int i, int n)
Definition: fft_template.c:162
#define AV_ONCE_INIT
Definition: thread.h:173
typedef void(RENAME(mix_any_func_type))
int index
Definition: gxfenc.c:89
float im
Definition: fft.c:82
uint16_t ff_fft_offsets_lut[21845]
#define t5
Definition: regdef.h:33
static av_cold void init_ff_cos_tabs(int index)
Definition: fft_template.c:57
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:108
#define TRANSFORM(a0, a1, a2, a3, wre, wim)
Definition: fft_template.c:503
#define TRANSFORM_ZERO(a0, a1, a2, a3)
Definition: fft_template.c:509
static void fft4(FFTComplex *z)
Definition: fft_template.c:555
#define CONFIG_MDCT
Definition: config.h:581
int
av_cold void ff_fft_end(FFTContext *s)
Definition: fft_template.c:314
FFTSample im
Definition: avfft.h:38
#define t6
Definition: regdef.h:34
void ff_mdct_calcw_c(FFTContext *s, FFTDouble *output, const FFTSample *input)
Definition: mdct_fixed.c:24
#define COSTABLE_CONST
Definition: fft.h:119
av_cold void ff_fft_init_aarch64(FFTContext *s)
void(* fft_calc)(struct FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in ff_fft_init().
Definition: fft.h:106
#define t4
Definition: regdef.h:32
void ff_fft_init_mips(FFTContext *s)
FFT transform.
Definition: fft_mips.c:501
#define BF(a, b, c, s)
#define ff_mdct_calc_c
Definition: fft-internal.h:88
#define HAVE_MIPSFPU
Definition: config.h:74
static int ff_thread_once(char *control, void(*routine)(void))
Definition: thread.h:175
static void fft8(FFTComplex *z)
Definition: fft_template.c:569
COSTABLE_CONST FFTSample *const FFT_NAME(ff_cos_tabs)[]
static const struct twinvq_data tab
#define ARCH_AARCH64
Definition: config.h:17
#define av_freep(p)
uint16_t * revtab
Definition: fft.h:91
#define M_PI
Definition: mathematics.h:52
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32
Definition: asfcrypt.c:35
av_cold void ff_init_ff_cos_tabs(int index)
Initialize the cosine table in ff_cos_tabs[index].
Definition: fft_template.c:151
static void fft_calc_c(FFTContext *s, FFTComplex *z)
Definition: fft_template.c:625
static void fft16(FFTComplex *z)
Definition: fft_template.c:585
#define t2
Definition: regdef.h:30
definitions and tables for FFT
void ff_fft_init_x86(FFTContext *s)
Definition: fft_init.c:27
FFTComplex * tmp_buf
Definition: fft.h:92